• 제목/요약/키워드: Ratio of permeability

Search Result 743, Processing Time 0.769 seconds

Compressibility and Permeability Characteristics of Bentonite-Soil/Sand Mixes (벤토나이트-흙/모래 혼합토의 압축 및 투수 특성 연구)

  • 송창섭;윤병옥;반창현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.123-129
    • /
    • 1998
  • Compressibility and permeability properties are the most important input parameters necessary to assess the suitability of core materials in seepage control system construction. To achieve this objective, an experimental investigation was conducted in the laboratory. For the bentonite-soil/sand mixes, consolidation and permeability tests were carried out in the conventional consolidation cell, 6Omm in diameter and 2Omm in height, was modified to perform a falling head type permeability test. From the results, the normalized relationship with respect to void ratio at liquid-limit state $(e_L)$, and the changes of compressibility and permeability for various bentonite-soil/sand mixes were presented. This approach will be helpful in proportioning mixes and predicting corresponding changes in engineering behavior. And it is possible to proportion a mix to arrive at the required compressibility without affecting the permeability.

  • PDF

Effect of cold reduction on the magnetic properties of the permalloy steel sheet (Permalloy 판재의 자기적 성질에 미치는 냉간 압연율의 영향)

  • Choi, S.J.;Kim, Y.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.05a
    • /
    • pp.46-48
    • /
    • 1988
  • The effect of cold reduction ratio on magnetic properties of 45% Ni-Fe permalloy was studied. To know the relationship between the crystal orientation and the magnetic properties, the pole figure was measured by X-ray diffraction method. In the case of single rolled reduction, the coercive force decreased with cold reduction ratio monotonically, but the maximum permeability, induction and squreness increased drastically. In the case of double rolled reduction (total reduction ratio is 90%), the saturation and residual induction increased slightly with secondary reduction ratio, but the maximum permeability and the coercive force had the maximum and the minimum value at the 50/50% reduction ratio respectively. And strong {100} <100> pole was developed by increasing the cold reduction ratio.

  • PDF

Usefulness of Permeability Map by Perfusion MRI of Brain Tumor the Grade Assessment (뇌종양의 등급분류를 위한 관류 자기공명영상을 이용한 투과성영상(Permeability Map)의 유용성 평가)

  • Bae, Sung-Jin;Lee, Joo-Young;Chang, Hyuk-Won
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.325-334
    • /
    • 2009
  • Purpose : This study was conducted to assess how effective the permeability ratio and relative cerebral blood volume ratio are to tumor through perfusion MRI by measuring and reflecting the grade assessment and differential diagnosis and the permeability and relative cerebral blood volume of contrast media plunged from blood vessel into organ due to breakdown of blood-brain barrier in cerebral. Subject and Method : Subject of study was 29 patients whose diagnosis were confirmed by biopsy after surgery and 550 (11 slice$\times$50 image) perfusion MRI were used to make image of relative cerebral blood volume with the program furnished on instrument. The other method was to transmit to private computer and the image analysis was made additionally by making image of relative cerebral blood volume-reformulated singular value decomposition, rCBV-rSVD and permeability using IDL.6.2. In addition, Kruskal-wallis test tonggyein non numerical average by a comparative analysis of brain tumors Results : The rCBV ratio (Functool PF; GE Medical Systems and IDL 6.2 program by analysis) and permeability ratio of tumors were as follows; high grade glioma(n=4), (14.75, 19.25) 13.13. low grade astrocytoma(n=5) (14.80, 15.90) 11.60, glioblastoma(n=5) (10.90, 18.60), 22.00, metastasis(n=6) (11.00, 15.08). 22.33. meningioma(n=6) (18.58, 7.67), 5.58. oliogodendroglioma(n=3) (23.33, 16.33, 15.67. Conclusion : It was not easy to classify the grade with the relative cerebral blood volume ratio measured by using the relative cerebral blood image by type of tumors, however, permeability ratio measured by permeability image revealed that the higher the grade of tumor, the higher the measured permeability ratio, showing the assessment of tumor grade is more effective to differential diagnosis.

  • PDF

An Experimental Study on the Properties of Porous Concrete according to the Mix Factors and Compaction Load (배합조건 및 다짐하중에 따른 포러스 콘크리트의 특성에 관한 실험적 연구)

  • Lim, Seo-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.83-91
    • /
    • 2015
  • Porous concrete consists of cement, water and coarse aggregate and has been used for the purpose of decreasing the earth environmental load such as air and water permeability, sound absorption, etc. However, the physical and mechanical properties of porous concrete changes due to compaction load during construction. For such a reason, the purpose of this study is to investigate the physical and mechanical properties of porous concrete according to the kinds of binder, the ratio of water to binder and target void ratio. In particular, this study has been carried out to investigate the influence of compaction load on the void ratio, strength and coefficient of permeability. Aggregate used in this study are by-products generated during production of crushed gravel with a maximum size of 13mm. The results of this study showed that the target void ratio, the coefficient of permeability and compressive strength of porous concrete had a close relationship with the void ratio, and it will be possible that the void ratio is suggested by the mix design of porous concrete. The compressive strength of porous concrete was the highest at the content of the expansive admixture of 5% and compared to non-mixture, 10% mixture of silica fume improved compressive strength about 32%. And in the result of the study to change the compaction load, the compressive strength increased from the load of 15kN, the void ratio decreased from the load of 0.8kN, the coefficient of permeability decreased from the load 35kN, respectively.

Constitutive Relation of Consolidaion for Marine Clay (해성점토의 압밀구성관계)

  • 차경섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.3
    • /
    • pp.89-96
    • /
    • 2000
  • Most soft ground in the southern and western coasts in Korea consists of very compressible alluvial deposits. Four samples in these alluvial deposite were selected to manifest the constitutive relations of consolidation. A series of tests were performed to investigate void ratio -effective stress relationand void ratio-coefficient of permeability relation on soil samples obtained at Haenam. Jindo Mankyung and Janghung permeabilities by CRS thoery were similar to directly measured data but those of indirectly computed by $C\upsilon$ shows difference. Several models about compressibility and permeability were compared with test data.

  • PDF

A Study on the Improvements of Strengths of Water-Permeable Concrete (투수성 콘크리트의 강도개선에 관한 연구)

  • 은재기;이철웅;김완기;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.307-312
    • /
    • 1999
  • The purpose of this study is to ascertain the strength properties of water-permeable concrete with redispersible polymer powder, silica fume and polypropylene fibers. The water-permeable concrete using rediapersibel polymer powder with a water-cement ratio of 25%, polymer-cement ratios of 0 to 10%, silica fume contents of 0 to 10% and fiber contents of 0 to 1.5% are prepared, and tested for flexural strength, compressive strength and water permeability. From the test results, improvements in the strength properties of the water-permeable concrete due to the addition of the redispersible polymer powder, silica fume and fibers are discussed. It is concluded from the test results that the superior flexural and compressive strengths of water-permeable concretes are obtained at a propylene fiber content of 1.0% with a void filling ratio of 50%. And, the water-permeable concrete having a flexural strength of 15.6~28.4kgf/$\textrm{cm}^2$, a compressive strength of 63.5~120.6kgf/$\textrm{cm}^2$, and a coefficient of permeability of 1.14~1.70cm/s at a void filling ratio of 30% can be prepared. Also water-permeable concrete having a flexural strength of 35.6~57.9kgf/$\textrm{cm}^2$, a compressive strength of 164.0~290.0kgf/$\textrm{cm}^2$, and a coefficient of permeability of 0.19~1.04cm/s at a void filling ratio of 50% can be prepared in the consideration of the mix proprotioning factors.

  • PDF

A Study on the Application of Permeable Preactive Barriers in Landfill (매립지에서 반응성 투수벽체의 적용성에 관한 연구)

  • Chun, Byung-Sik;Park, Jae-Woo;Do, Jong-Nam;Park, Joong-Sub;Park, Chan-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1126-1131
    • /
    • 2006
  • This study is part of the project that develops the permeable preactive barrier to be applied in a landfill. The geotechnical applicability of the permeable preactive barrier that filters the leachate from the landfill was evaluated. Dry specimens were made using a mixture of sand, loess and bentonite. A series of experiments are performed to determine the unconfined compressive strength and permeability of various mixing ratio of bentonite, loess, and sand. The laboratory test indicate that the optimum-mixing ratio that satisfied the regulation of unconfined compressive strength(490kPa) and coefficient of permeability$(10^{-3}\sim10^{-4}cm/s)$ of the landfill was when the ratio of sand and loess was 8:2 with bentonite content of 2%. The permeable preactive barrier is different from an impermeable barrier in that it permits a limited diffusion of the leachate, which will be directly purified biologically and chemically in the landfill.

  • PDF

Porosity and Strength Properties of Permeable Concrete Using Limestone Mine Wastes as Coarse Aggregate for Concrete (폐석회석 굵은골재를 사용한 투수 콘크리트의 공극 및 강도특성)

  • 최연왕;임학상;정지승;문대중;신화철
    • Resources Recycling
    • /
    • v.12 no.2
    • /
    • pp.11-20
    • /
    • 2003
  • Limestone mine waste was used as a aggregate far permeable concrete. Void ratio, continuous void ratio, coefficient of permeability, compressive strength and flexural strength of concrete were measured and then the relationship between porosity and strength properties was investigated. Void ratio, continuous void ratio and strength properties of permeable concrete were greatly influenced by the grain size of aggregate and void filling ratio in comparison with the containing ratio of limestone mine waste. Furthermore, void ratio showed a good relation with continuous void ratio, and porosity of permeable concrete indicated a good relation with strength properties also. The coefficient of permeability of permeable concrete using limestone waste was over 0.2 cm/sec and was excellent result in comparison with normal concrete. Therefore, it could be expected that the limestone mine waste would be utilized as aggregate for pavement concrete, green concrete and water resource specie concrete in the results of this study.

Permeation properties of concretes incorporating fly ash and silica fume

  • Kandil, Ufuk;Erdogdu, Sakir;Kurbetci, Sirin
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.357-363
    • /
    • 2017
  • This paper conveys the effects of fly ash and silica fume incorporated in concrete at various replacement ratios on the durability properties of concretes. It is quite well known that concrete durability is as much important as strength and permeability is the key to durability. Permeability is closely associated with the voids system of concrete. Concrete, with less and disconnected voids, is assumed to be impermeable. The void system in concrete is straightly related to the mix proportions, placing, compaction, and curing procedures of concrete. Reinforced concrete structures, particularly those of subjected to water, are at the risk of various harmful agents such as chlorides and sulfate since the ingress of such agents through concrete becomes easy and accelerates as the permeability of concrete increases. Eventually, both strength and durability of concrete reduce as the time moves on, in turn; the service life of the concrete structures shortens. Mineral additives have been proven to be very effective in reducing permeability. The tests performed to accomplish the aim of the study are the rapid chloride permeability test, pressurized water depth test, capillarity test and compressive strength test. The results derived from these tests indicated that the durability properties of concretes incorporated fly ash and silica fume have improved substantially compared to that of without mineral additives regardless of the binder content used. Overall, the improvement becomes more evident as the replacement ratio of fly ash and silica fume have increased. With regard to permeability, silica fume is found to be superior to fly ash. Moreover, at least a 30% fly ash replacement and/or a replacement ratio of 5% to 10% silica fume have been found to be highly beneficial as far as sustainability is concerned, particularly for concretes subjected to chloride bearing environments.

Numerical Experiments on the Evaluation of Effective Permeability and Tunnel Excavation in the Three Dimensional Fracture Network Model (3차원 균열연결망 모델에서의 유효투수계수 평가 및 터널굴착 지하수 유동해석에 대한 수치실험)

  • 장근무
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.275-286
    • /
    • 1998
  • The effective permeability and the representative element volume(REV) of fracture network model were evaluated based on the parameters such as permeability tensor, principal permeability and the direction of principal permeability. The effective permeability ranges between the harmonic mean and the arithmetic mean of the local permeabilities of subdivided blocks. From the numerical experiments, which were for investigating the influence of model volume on the variation of flux for the cubic models, it was found that the variation of flux became reduced as the model volume approached REV. The variation of groundwater flux into the tunnel in the fracture network model was mainly dependent on the ratio of the tunnel length to model size rather than REV. And it was found that groundwater flux into the tunnel was not completely consistent between the fracture network model and the equivalent porous media model, especially when the ratio of the tunnel length to model size is small.

  • PDF