• 제목/요약/키워드: Ratio of Specific Heat

검색결과 204건 처리시간 0.031초

주유동 기체의 물리적 특성이 환형 분사 초음속 이젝터의 성능에 미치는 영향 (The effects of primary gas physical properties on the performance of annular injection type supersonic ejector)

  • 진정근;김세훈;박근홍;권세진
    • 한국항공우주학회지
    • /
    • 제33권12호
    • /
    • pp.68-75
    • /
    • 2005
  • 주유동 기체의 물리적 특성이 초음속 이젝터 성능에 미치는 영향에 관한 연구를 수행하였다. 기체의 분자량과 정압 비열 변화에 따른 성능 변화에 관한 연구는 축대칭 환형 분사 초음속 이젝터를 사용하였다. 주유동 기체로는 공기, $CO_{2}$, Ar, $C_{3}H_{8}$, $CCl_{2}F_{2}$를 사용하였다. 주유동 기체의 분자량과 정압 비열이 증가함에 따라 일정 주유동 압력에 대한 부유동 압력은 증가하였고 이러한 경향은 몰비열이나 비열비의 형태로 통합되어 확인되었다.

Thermal properties of latent heat storage microcapsule-water slurry

  • Mun, Soo-Beom
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권8호
    • /
    • pp.807-812
    • /
    • 2015
  • A microcapsule water slurry is a latent heat-storage material having a low melting point. In this study, the thermal properties of a microcapsule water slurry are measured. The physical properties of the test microcapsule water slurry, i.e., thermal conductivity, specific heat, latent heat, and density, are measured, and the results are discussed for the temperature region of solid and liquid phases of the dispersion material (paraffin). It is clarified that Eucken's equation can be applied to the estimation of the thermal conductivity of the microcapsule water slurry. Useful correlation equations of the thermal properties of the microcapsule water slurry are proposed in terms of the temperature and concentration ratio of the microcapsule water slurry constituents.

수치 해석을 이용한 단일 마이크로채널의 단면 가열 조건의 열전달 특성에 관한 연구 (Investigation of Heat Transfer in Microchannel with One-Side Heating Condition Using Numerical Analysis)

  • 최치웅;허철;김동억;김무환
    • 대한기계학회논문집B
    • /
    • 제31권12호
    • /
    • pp.986-993
    • /
    • 2007
  • The microchannel heat sink is promising heat dissipation method far high density electronic devices. The cross-sectional shape of MEMS based microchannel heat sink is limited to triangular, trapezoidal, and rectangular due to their fabrication method. And heat is added to one side surface of heat source. Therefore, those specific conditions make some complexity of heat transfer in microchannel heat sink. Though many previous research of conjugate heat transfer in microchannel was conducted, most of them did not consider heat loss. In this study, numerical investigation of conjugate heat transfer in rectangular microchannel was conducted. The method of heat loss evaluation was verified numerically. Heat distribution was different for each wall of rectangular microchannel due to thermal conductivity and distance from heat source. However, the ratio of heat from each channel wall was correlated. Therefore, the effective area correction factor could be proposed to evaluate accurate heat flux in one side heating condition.

수직관 내 초임계상태 물의 천이상태 대류열전달현상에 관한 연구 (A Study on the Transient Convective Heat Transfer for Supercritical Water in a Vertical Tube)

  • 이상호
    • 설비공학논문집
    • /
    • 제17권12호
    • /
    • pp.1095-1105
    • /
    • 2005
  • Numerical analysis has been carried out to investigate transient turbulent convective heat transfer in a vertical tube for supercritical water near the thermodynamic critical point. Heat transfer and fluid flow in the tube we strongly coupled due to the large variations of thermodynamic and transport properties such as density, specific heat, and turbulent viscosity. As pressure in the tube approaches to the critical pressure, the properties variation with time becomes larger. Heat transfer coefficient rapidly decreases along the tube near the pseudocritical temperature at the tube wall for $P_R<1.2$. Stanton number variation with time is largely reduced in the region of gas-like phase in comparison with Nusselt number. Turbulent viscosity ratio close to the wall increases near the pseudocritical temperature and it gradually decreases with time.

6기통 압축착화 기관의 단일 영역 열방출량 계산 (An One-zone Heat Release Analysis of a 6 Cylinder Compression-Ignition Engine)

  • 신범식;이석영;전광민
    • 한국자동차공학회논문집
    • /
    • 제4권1호
    • /
    • pp.147-154
    • /
    • 1996
  • An one-zone heat release analysis was studied for a 6 cylinder direct injetction compressionignition engine. The heat transfer constants in this anlysis were calibrated to match the measured fuel energy at 1,000 rpm full load, which was the fuel mass multiplied by the fuel's heating value. The integrated gross heat release values were close to the measured fuel energy at various full load operating conditions. The combustion inefficiency from this calculation was proportional to the smoke of exhaust gas.

  • PDF

Vuilleumier 사이클로 작동되는 열구동 냉동기의 예비설계조건 (Preliminary Design Conditions for a Thermally Actuated Refrigerator Based on the Vuilleumier Cycle)

  • 유호선;강병하
    • 대한기계학회논문집
    • /
    • 제16권12호
    • /
    • pp.2358-2367
    • /
    • 1992
  • 본 연구에서는 그 기초단계로서 작동유체의 실제상태변화에 근접하면서 간편 한 근사적인 단열해석법을 적용하여 VM사이클의 구체적인 예비설계조건을 제시하고자 한다.

固體分末 이 浮上된 二相亂流 管流動 의 熱傳達 解析 (Analysis of Turbulent Heat Transfer of Gas-Solid Suspension Flow In Pipes)

  • 김재웅;최영돈
    • 대한기계학회논문집
    • /
    • 제6권4호
    • /
    • pp.331-340
    • /
    • 1982
  • Numerical analysis is made on the turbulent heat transfer with suspension of solid particles in circular tube with constant heat flux. The mean motion of suspending particles in mixture is treated as the secondary gas flow with virtual density and viscosity. Our modeling of turbulent transport phenomena of suspension flow is based on this assumption and conventional mixing length theory. This paper gives the evidence that the mixing length models can be extended to close the governing equations for two phase turbulent flow with solid boundary at a first order level. Results on Nusselt numbers obtained by analytical treatments are compared with available experimental data and discussed. They suggest that the most important parameters of two phase turbulent heat transfer phenomena are relative particle diameter to pipe diameter, gas-solid loading ratio, and specific heat of suspending material.

가솔린 엔진에서의 냉각수로의 전열량에 대한 연구 (A Study on the Heat Rejection to Coolant in a Gasoline Engine)

  • 류택용;신승용;이은현;최재권
    • 한국자동차공학회논문집
    • /
    • 제5권6호
    • /
    • pp.77-88
    • /
    • 1997
  • The heat rejection to coolant is a dominant factor for building vehicle cooling system such as radiator and cooling fan. Since the vehicle cooling system also has effects on fuel consumption and noise, the study of heat rejection to coolant has been emphasized. However, the study on heat rejection to coolant has been mainly focused on the field that related to the characteristics of combustion and localized heat loss. It is no much of use in design for the entire cooling system because it is focused on such a specific point. In this work, the heat rejection rate to coolant for four different engines are obtained to derive a simple heat transfer empirical formula that can be applied to the engine cooling system design, and it is compared with the other studies. Also, to observe effects of engine operation factors and heat transfer factors on coolant, we measured the metal temperature and the heat rejection rate. The heat rejection to coolant does not depend significantly upon the coolant flowrate, but mainly upon the amount of air fuel mixture and the air fuel ratio as long as the composition of coolant does not change. The reduction of heat rejection to coolant did not effectively improve the fuel consumption, but was mostly converted to raise the exhaust gas temperature and the oil temperature.

  • PDF

친환경 안경테 판재의 심입 가공성 향상을 위한 고비열 가소제 혼입에 관한 연구 (Study on the Eco-friend Frame Sheet with Improved Glasses Temple's Insertion-processibility by Blending Plasticizer of High Specific Heat)

  • 서영민;이해성;이성준;정상원;김현철;김은주;고영준;최진현;이세근
    • 한국안광학회지
    • /
    • 제18권1호
    • /
    • pp.11-17
    • /
    • 2013
  • 목적: 본 연구는 cellulose acetate/poly ethylene glycol(CA/PEG) 안경테용 판재의 심입가공성을 향상시키기 위하여 심입가공온도 영역에서 비교적 높은 비열을 갖는 친환경 가소제인 triacetin을 2차 가소제로 도입함으로써 가공 효율이 향상 된 친환경 안경테 판재를 제조하는데 목적이 있다. 방법: 전체 가소제의 양을 CA 대비 30 wt%로 고정하고 1차 가소제인 PEG와 2차 가소제인 triacetin의 함량을 조절하여 제조된 CA/PEG/triacetin 조성물의 비열 및 열적특성을 분석하고, 다양한 기계적 물성과 광학적 특성의 비교분석을 통해 우수한 가공성을 갖는 안경테 소재를 위한 최적의 가소제 조성을 결정하였다. 결과: Triacetin 도입을 통해 CA 판재의 비열 상승을 확인하였으며, triacetin 함량비가 증가할수록 유리전이온도(Tg)가 낮아지고 심입가공성의 척도가 되는 감온속도의 감소를 확인하였다. 또한 기존의 CA/PEG 안경테 소재와 비교 시 우수한 광택특성 및 경도를 확인하였으며, 동등수준 이상의 기계적 물성을 보임을 확인하였다. 결론: PEG/triacetin의 투입비율을 조절하여 심입가공성을 향상시키고, 안경테 판재로 사용되기 적합한 물성 및 특유의 광택과 우수한 심미성을 만족하는 CA 판재를 제조할 수 있다.

Numerical Simulation of Edgetone Phenomenon in Flow of a Jet-edge System Using Lattice Boltzmann Model

  • Kang, Ho-Keun
    • Journal of Ship and Ocean Technology
    • /
    • 제12권1호
    • /
    • pp.1-15
    • /
    • 2008
  • An edgetone is the discrete tone or narrow-band sound produced by an oscillating free shear layer, impinging on a rigid surface. In this paper, 2-dimensional edgetone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle is presented using lattice Boltmznan model with 21 bits, which is introduced a flexible specific heat ratio y to simulate diatomic gases like air. The blown jet is given a parabolic inflow profile for the velocity, and the edges consist of wedges with angle 20 degree (for symmetric wedge) and 23 degree (for inclined wedge), respectively. At a stand-off distance w, the edge is inserted along the centerline of the jet, and a sinuous instability wave with real frequency is assumed to be created in the vicinity of the nozzle exit and to propagate towards the downward. Present results presented have shown in capturing small pressure fluctuating resulting from periodic oscillation of the jet around the edge. The pressure fluctuations propagate with the speed of sound. Their interaction with the wedge produces an irrotational feedback field which, near the nozzle exit, is a periodic transverse flow producing the singularities at the nozzle lips. It is found that, as the numerical example, satisfactory simulation results on the edgetone can be obtained for the complex flow-edge interaction mechanism, demonstrating the capability of the lattice Boltzmann model with flexible specific heat ratio to predict flow-induced noises in the ventilating systems of ship.