• 제목/요약/키워드: Ratio of Curvature

검색결과 448건 처리시간 0.032초

DEFORMING PINCHED HYPERSURFACES OF THE HYPERBOLIC SPACE BY POWERS OF THE MEAN CURVATURE INTO SPHERES

  • Guo, Shunzi;Li, Guanghan;Wu, Chuanxi
    • 대한수학회지
    • /
    • 제53권4호
    • /
    • pp.737-767
    • /
    • 2016
  • This paper concerns closed hypersurfaces of dimension $n{\geq}2$ in the hyperbolic space ${\mathbb{H}}_{\kappa}^{n+1}$ of constant sectional curvature evolving in direction of its normal vector, where the speed equals a power ${\beta}{\geq}1$ of the mean curvature. The main result is that if the initial closed, weakly h-convex hypersurface satisfies that the ratio of the biggest and smallest principal curvature at everywhere is close enough to 1, depending only on n and ${\beta}$, then under the flow this is maintained, there exists a unique, smooth solution of the flow which converges to a single point in ${\mathbb{H}}_{\kappa}^{n+1}$ in a maximal finite time, and when rescaling appropriately, the evolving hypersurfaces exponential convergence to a unit geodesic sphere of ${\mathbb{H}}_{\kappa}^{n+1}$.

고강도 철근콘크리트 기둥의 구성모델 (Constitutive Modeling of Confined High Strength Concrete)

  • Kyoung Oh, Van;Hyun Do, Yun;Soo Young, Chung
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.445-450
    • /
    • 2003
  • The moment-curvature envelope describes the changes in the flexural capacity with deformation during a nonlinear analysis. Therefore, the moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted providing the stress-strain relation for the concrete and steel are known. The moments and curvatures associated with increasing flexural deformations of the column may be computed for various column axial loads by incrementing the curvature and satisfying the requirements of strain compatibility and equilibrium of forces. Clearly it is important to have accurate information concerning the complete stress-strain curve of confined high-strength concrete in order to conduct reliable moment-curvature analysis to assess the ductility available from high-strength columns. However, it is not easy to explicitly characterize the mechanical behavior of confined high-strength concrete because of various parameter values, such as the confinement type of rectilinear ties, the compressive strength of concrete, the volumetric ratio and strength of rectangular ties, etc. So a stress-strain confinement model is developed which can simulate a complete inelastic moment-curvature relations of a high-strength reinforced concrete column

  • PDF

천반 곡률반경에 따른 아치형 공동의 변형거동에 관한 연구 (Deformation Behavoirs of Arched Openings Related with Roof Curvature)

    • 터널과지하공간
    • /
    • 제6권1호
    • /
    • pp.10-18
    • /
    • 1996
  • Arched openings are generally excavated in underground construction works. Since stress distribution around openings depends on geological structure in rock mass, any shape of arched openings fully conformed with in-situ stress condition should be recommended to maintain mechanical safety of structures. Shape of arched openings is specified by both roof curvature and height-width ratio, and especially this report presents deformation behaviors related with roof curvature. Scale model tests and numerical studies of various shaped openings are conducted, where rectangular opening shows the greatest convergence. Through the anlayses of various arched opengings, as radius of roof curvature is increased, roof lowering and sidewall closure are remarkably increased, whereas floor heaving is increased little by little. By the way, it is useful that displacements of openings are roughly estimated in the stage of preliminary investigation. To find out elastic displacements of arched openings with any roof curvature, regressional formula and charts by least square method are represented. In addition elastoplastic deformation behavoirs of arched openings concerning associated adn non-associated flow rule are discussed.

  • PDF

형상비 2.5의 RC 교각의 내진 곡률연성도 (Seismic Curvature Ductility of RC Bridge Piers with 2.5 Aspect Ratio)

  • 정영수;박창규;이은희
    • 한국지진공학회논문집
    • /
    • 제8권3호
    • /
    • pp.1-12
    • /
    • 2004
  • 1989년 로마프리타지진 및 1995년 효고현 남부지진등 많은 교각에서 휨-전단 파괴에 의한 피해가 발생하였다. 그럼에도 불구하고 지금까지의 교각의 내진성능에 관한 연구는 대부분 휨파괴에 대한 연구가 지배적이었다. RC 교각의 내진성능은 교각의 소성힌지구간의 성능에 좌우되고 있으며, 소성힌지의 연성은 곡률에 의해 평가하는 것이 바람직하다. 실험연구는 지진하중의 손상을 입은 RC교각의 휨전단거동에 관한 소성힌지구간 내의 곡률변화를 평가하였다. 실험에 사용된 7기의 실험체는 형상비 2.5에 횡방향 구속력, 주철근의 겹침이음 그리고 섬유보강을 변수로 가지고 있다. 이 실험체는 유사동적실험 수행을 통해 손상을 주었으며, 유사동적실험 후에는 일정한 축력,$P=0.1f_{ck}A_g$을 유지하면서 변위제어방식으로 유사정적실험을 실시하여 잔류내진성능을 평가하였다. 실험 결과 기초에서 15cm 구간에 가장 큰 곡률이 발생하였으며 파괴도 이 단면에 집중되었다. 또한, 연성도 분석결과 주철근이 겹침이음 된 RC 교각이 낮은 곡률연성도를 보였으며, 이를 섬유보강한 실험체의 휨강성과 곡률연성도는 현저히 개선되었다. 그리고, 교각의 곡률변화를 분석하여 횡구속력을 고려한 등가소성힌지길이 산정식을 제안하였으며, 이 제안된 식을 적용하여 변위연성도와 곡률연성도 관계를 분석하였다.

Curvature ductility of high strength concrete beams according to Eurocode 2

  • Bouzid, Haytham;Kassoul, Amar
    • Structural Engineering and Mechanics
    • /
    • 제58권1호
    • /
    • pp.1-19
    • /
    • 2016
  • Recently, the high-strength concrete is increasingly used in the construction of reinforced concrete structures due to its benefits, but this use is influenced negatively on the local ductility of structural elements. The objective of this study is the prediction of a new approach to evaluate the curvature ductility factor of high strength concrete beams according to Eurocode 2. After the presentation of the Constitutive laws of materials and the evaluation method of curvature ductility according to the Eurocode 2, we conduct a parametric study on the factors influencing the curvature ductility of inflected sections. The calibrating of the obtained results allows predicting a very simple approach for estimating the curvature ductility factor. The proposed formula allows to calculate the curvature ductility factor of high strength concrete beams directly according to the concrete strength $f_{ck}$, the yield strength of steel $f_{yk}$ and the ratio of tension and compression reinforcements ${\rho}$ and ${\rho}^{\prime}$ respectively, this proposed formula is validated by theoretical and experimental results of different researchers.

Plastic hinge length for coupled and hybrid-coupled shear walls

  • Abouzar Jafari;Meysam Beheshti;Amir Ali Shahmansouri;Habib Akbarzadeh Bengar
    • Steel and Composite Structures
    • /
    • 제48권4호
    • /
    • pp.367-383
    • /
    • 2023
  • A coupled wall consists of two or more reinforced concrete (RC) shear walls (SWs) connected by RC coupling beams (CBs) or steel CBs (hybrid-coupled walls). To fill the gap in the literature on the plastic hinge length of coupled walls, including coupled and hybrid-coupled shear walls, a parametric study using experimentally validated numerical models was conducted considering the axial stress ratio (ASR) and coupling ratio (CR) as the study variables. A total of sixty numerical models, including both coupled and hybrid-coupled SWs, have been developed by varying the ASR and CR within the ranges of 0.027-0.25 and 0.2-0.5, respectively. A detailed analysis was conducted in order to estimate the ultimate drift, ultimate capacity, curvature profile, yielding height, and plastic hinge length of the models. Compared to hybrid-coupled SWs, coupled SWs possess a relatively higher capacity and curvature. Moreover, increasing the ASR changes the walls' behavior to a column-like member which decreases the walls' ultimate drift, ductility, curvature, and plastic hinge length. Increasing the CR of the coupled SWs increases the walls' capacity and the risk of abrupt shear failure but decreases the walls' ductility, ultimate drift and plastic hinge length. However, CR has a negligible effect on hybrid-coupled walls' ultimate drift and moment, curvature profile, yielding height and plastic hinge length. Lastly, using the obtained results two equations were derived as a function of CR and ASR for calculating the plastic hinge length of coupled and hybrid-coupled SWs.

Moment-curvature hysteresis model of angle steel frame confined concrete columns

  • Rong, Chong;Tian, Wenkai;Shi, Qingxuan;Wang, Bin;Shah, Abid Ali
    • Structural Engineering and Mechanics
    • /
    • 제83권1호
    • /
    • pp.19-29
    • /
    • 2022
  • The angle steel frame confined concrete columns (ASFCs) are an emerging form of hybrid columns, which comprise an inner angle steel frame and a concrete column. The inner angle steel frame can provide axial bearing capacity and well confining effect for composite columns. This paper presents the experimental and theoretical studies on the seismic behaviour of ASFCs. The experimental study of the 6 test specimens is presented, based on the previous study of the authors. The theoretical study includes two parts. One part establishes the section analysis model, and it uses to analyze section axial force-moment-curvature. Another part establishes the section moment-curvature hysteresis model. The test and analysis results show that the axial compression ratio and the assembling of steel slabs influence the local buckling of the angle steel. The three factors (axial compression ratio, content of angle steel and confining effect) have important effects on the seismic behaviour of ASFCs. And the theoretical model can provide reasonably accurate predictions and apply in section analysis of ASFCs.

진동모드를 이용한 링 구조물의 결함 탐지 (Fault Detections of Ring Structures using Vibration Modes)

  • 김석현;장호식
    • 산업기술연구
    • /
    • 제22권A호
    • /
    • pp.29-36
    • /
    • 2002
  • A damage detection algorithm using vibration modes is applied to the ring structures and the modal behaviors of the slightly asymmetric rings are examined. Mode shape change, MSER(modal strain energy ratio) and MCR(modal curvature ratio) are investigated to identify the locations of faults or damages The above fault detection parameters are calculated and compared by the finite element analysis on rings with designed local damages. Damages are modeled as a reduced stiffness in the analysis The results show that MSER and MCR can be proper parameters to detect local damages in the ring structures.

  • PDF

나선코일튜브내의 강제대류 열전달에 관한 연구 (Study on forced convective heat transfer in helically ceiled tubes)

  • 한규일;박종운;임태우
    • 설비공학논문집
    • /
    • 제10권3호
    • /
    • pp.282-291
    • /
    • 1998
  • Heat transfer performance are studied for the turbulent flow of water in 3 smooth tube coils having ratios of coil to tube diameter of 16, 21 and 27, and a corrugated-coiled tube having a ratio of coil to tube diameter of 29, for Reynolds numbers from 8000 to 60000 and is also compared with the limited results available to data. The experiments are carried out for the fully developed turbulent flow of water in tube coils under the condition of uniform heat flux. This work is limited 0 tube coils of R/a between 10 and 30. The tube having a ratio of coil to tube diameter of 27 among the 3 smooth tube coils shows the best heat transfer performance. The performance of coiled tube best transfer performance. The performance of coiled tube with a similar curvature ratio is better for a corrugated-coiled tube(R/a=17) than for a smooth coiled tube(R/a=16). An empirical relation which correlates most of the data within $\pm$25% was also developed. Test result shows that the Nusselt number is found to be affected by a secondary flow due to curvature.

  • PDF