• Title/Summary/Keyword: Ratio control valve

Search Result 169, Processing Time 0.023 seconds

Clinical Experiences of Open Heart Surgery [50 Cases] (개심술 치험 50례)

  • 임진수
    • Journal of Chest Surgery
    • /
    • v.18 no.4
    • /
    • pp.692-699
    • /
    • 1985
  • Fifty cases of Open Heart Surgery due to congenital and acquired heart disease were done using the cardiopulmonary bypass in the Department of Thoracic and Cardiovascular surgery, Chosun University Hospital from November, 1980 to June, 1985. 1. The age of the congenital heart disease was from 7 to 29 years, the mean age was 14.5 years. In the acquired heart disease, the age was from 14 to 48 years, and the mean age was 22.3 years. The ratio of male to female was about 1.8:1. 2. The number of congenital cyanotic heart disease were 7 patients, congenital acyanotic heart disease were 17 patients and acquired valvular heart disease were 26 patients. All of the acquired heart disease was one or more valve disease. 3. Preoperative symptoms of the congenital heart disease were exertional dyspnea [cyanotic 100%, acyanotic 70.6%] and palpitation [cyanotic 28.6%, acyanotic 76.1%], and the acquired heart diseases were exertional dyspnea [92.3%], palpitation [34.1 %], and chest discomfort [30.8%]. 4. The method of the myocardial protection during the cardiopulmonary bypass were mild or moderate hypothermia, intermittent coronary perfusion of the cardioplegic solution, topical myocardial hypothermia with 4oC Hartmann`s solution. 5. In the cases of the valve replacement, postoperative oral anticoagulant therapy was started at oral intake of food using the warfarin and persantin, and the prothrombin time was maintained 30-50% of control value during 3-6 months for tissue valve replacement and permanently for metal valve replacement. 6. The postoperative complications were appeared in 24 cases and the complications were wound infection, occipital alopecia, hemorrhage etc. 7. The mortality after open heart surgery was 8 percents and the cause of death was low cardiac output syndrome, right heart failure, DIC, and Left ventricle rupture.

  • PDF

Minimally Invasive Procedure versus Conventional Redo Sternotomy for Mitral Valve Surgery in Patients with Previous Cardiac Surgery: A Systematic Review and Meta-Analysis

  • Muhammad Ali Tariq;Minhail Khalid Malik;Qazi Shurjeel Uddin;Zahabia Altaf;Mariam Zafar
    • Journal of Chest Surgery
    • /
    • v.56 no.6
    • /
    • pp.374-386
    • /
    • 2023
  • Background: The heightened morbidity and mortality associated with repeat cardiac surgery are well documented. Redo median sternotomy (MS) and minimally invasive valve surgery are options for patients with prior cardiac surgery who require mitral valve surgery (MVS). We conducted a systematic review and meta-analysis comparing the outcomes of redo MS and minimally invasive MVS (MIMVS) in this population. Methods: We searched PubMed, EMBASE, and Scopus for studies comparing outcomes of redo MS and MIMVS for MVS. To calculate risk ratios (RRs) for binary outcomes and weighted mean differences (MDs) for continuous data, we employed a random-effects model. Results: We included 12 retrospective observational studies, comprising 4157 participants (675 for MIMVS; 3482 for redo MS). Reductions in mortality (RR, 0.54; 95% confidence interval [CI], 0.37-0.80), length of hospital stay (MD, -4.23; 95% CI, -5.77 to -2.68), length of intensive care unit (ICU) stay (MD, -2.02; 95% CI, -3.17 to -0.88), and new-onset acute kidney injury (AKI) risk (odds ratio, 0.34; 95% CI, 0.19 to 0.61) were statistically significant and favored MIMVS (p<0.05). No significant differences were observed in aortic cross-clamp time, cardiopulmonary bypass time, or risk of perioperative stroke, new-onset atrial fibrillation, surgical site infection, or reoperation for bleeding (p>0.05). Conclusion: The current literature, which primarily consists of retrospective comparisons, underscores certain benefits of MIMVS over redo MS. These include decreased mortality, shorter hospital and ICU stays, and reduced AKI risk. Given the lack of high-quality evidence, prospective randomized control trials with adequate power are necessary to investigate long-term outcomes.

Thrust Control of Hybrid Propulsion System for Lunar Exploration (달 탐사를 위한 하이브리드 추진 시스템 추력제어)

  • Moon, Keunhwan;Han, Seongjoo;Kim, Hakchul;Kim, Kyehwan;Kim, Jinkon;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.34-41
    • /
    • 2014
  • A feasibility study of thrust control of hybrid propulsion system for lunar exploration is presented. The thrust control experiments were performed by controlling the oxidizer mass flow rate where the thrust modulation is carried by using a ball valve and a stepping motor. The gaseous oxygen (GOX) and the HDPE (High Density PolyEthylene) were used for the oxidizer and solid fuel, respectively. It was found that the thrust levels were stable without much fluctuation during the modulation period, and that the thrust was exactly controlled with target thrust modulation ratio of 53% and 32%.

Robust Air-to-fuel Ratio Control Algorithm of Passenger Car Diesel Engines Using Quantitative Feedback Theory (QFT 기법을 이용한 승용디젤엔진 공연비 제어 알고리즘 설계 연구)

  • Park, Inseok;Hong, Seungwoo;Shin, Jaewook;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.88-97
    • /
    • 2013
  • This paper presents a robust air-to-fuel ratio (AFR) control algorithm for managing exhaust gas recirculation (EGR) systems. In order to handle production tolerance, deterioration and parameter-varying characteristics of the EGR system, quantitative feedback theory (QFT) is applied for designing the robust AFR control algorithm. A plant model of EGR system is approximated by the first order transfer function plus time-delay (FOPTD) model. EGR valve position and AFR of exhaust gas are used as input/output variables of the plant model. Through engine experiments, parameter uncertainty of the plant model is identified in a fixed engine operating point. Requirement specifications of robust stability and reference tracking performance are defined and these are fulfilled by the following steps: during loop shaping process, a PID controller is designed by using a nominal loop transmission function represented on Nichols chart. Then, the frequency response of closed-loop transfer function is used for designing a prefilter. It is validated that the proposed QFT-based AFR control algorithm successfully satisfy the requirements through experiments of various engine operating points.

A Study on the Signal Processing Method for the Hall Sensorless Position Control of ETC Control System using a BLDC Motor (ETC 구동용 BLDC 제어시스템의 홀센서리스 위치제어를 위한 신호처리기법에 관한 연구)

  • Lee, Sang-Hun;Lee, Seon-Bong;Park, Cheol-Hu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.92-99
    • /
    • 2008
  • This paper describes an signal processing method for the hall sensorless position control of ETC control system using a BLDC motor. The proposed ETC control system, which is mainly consisted of a BLDC motor, a throttle plate, a return spring and reduction gear, has a position sensor with an analog voltage output on the throttle valve instead of BLDC motor for detecting rotor position of motor. So the additional commutation information is necessarily needed to control the mentioned ETC module. In order to estimate and determine the commutation state, it is proposed to properly manipulate the resolution of A/D converter considering the mechanical parameter, that is, the number of motor slot and the ratio of reduction gear. Through this method, the estimation of commutation state for operating the system is possible and the discrete signal for commutation is stably obtained. The validity of the method is examined through the experimental results.

Modeling and Control of a Hydraulic Brake Actuator for Vehcile Collision Avoidance Systems (차량 충돌 회피 시스템을 위한 유압브레이크 액츄에이터의 모델링 및 제어)

  • Jo, Yeong-Ju;Ha, Seong-Hyeon;Lee, Gyeong-Su;Heo, Seung-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.537-543
    • /
    • 2000
  • mathematical models for a hydraulic brake actuator and a brake control law for vehicle collision warning/collision avoidance (CW/CA) systems will be presented in this paper. The control law have been designed for optimzied safety and comfort. A solenoid-valve-controlled hydraulic brake actuator system for the CW/CA systems has been investigated, A nonlinear computer model and a linear model of the hydraulic brake actuator system have been developed. Both models were found to represent the actual system with good accuracy. Uncertainties in the brake actuator model have been considered in the design of the control law for the roubustness of the controller. The effects of brake control on CW/CA vehicle response has been investigated via simulations. The simulations were performed using the hydraulic brake system model and a complete nonlinear vehicle model. The results indicate that the proposed brake control law can provide the CW/CA vehicles with an opimized compromise between safety and comfort.

  • PDF

Implementation of a Mixing-Ratio Control System for Two-Component Liquid Silicone Mixture (이액형 액상실리콘 재료의 혼합비율 제어 시스템 개발)

  • Choo, Seong-Min;Kim, Young-Min;Lee, Keum-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.688-694
    • /
    • 2018
  • The mixture ratio of two-component liquid silicone is important for the inherent physical characteristics of the finished product. Therefore, it is necessary to uniformly control the ratio of the main material and the sub-material. In this paper, a mixing-ratio control system was designed, which consists of a digital flow meter and a flow control system to measure the flow rate of the raw materials and a pumping system to maintain constant pressure and transfer of the raw materials. In addition, a program was developed to control the organic interlocking and mixing ratio. For the verification of the developed system, we compared the actual weight of raw material with the value measured by the flow meter during pumping, and we measured the physical properties of the mixed material by making test samples with and without the application of the mixing-ratio improvement algorithm. The measured value was close to the reference value with a hardness range of 46-47 and tensile strength of 9.3-9.5 MPa. These results show that the mixing ratio of the liquid silicone is controlled within an error range of ${\pm}0.5%$.

High Response and Precision Control of Electronic Throttle Controller Module without Hall Position Sensor for Detecting Rotor Position of BLDCM

  • Lee, Sang-Hun;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.97-103
    • /
    • 2013
  • This paper describes the characteristics of Electronic Throttle Controller (ETC) module in BLDC motor without the hall sensor for detecting a rotor position. The proposed ETC control system, which is mainly consisted of a BLDC motor, a throttle plate, a return spring and reduction gear, has a position sensor with an analogue voltage output on the throttle valve instead of BLDC motor for detecting the rotor position. So the additional commutation information is necessarily needed to control the ETC module. For this, the estimation method is applied. In order to improve and obtain the high resolution for the position control, it is generally needed to change the gear ratio of the module or the electrical switching method etc. In this paper, the 3-phase switching between successive commutations is adapted instead of the 2-phase switching that is conventionally used. In addition, the position control with a variable PI gain is applied to improve a dynamic response during a transient period and reduce vibration at a stop in case of matching position reference. The mentioned method can be used to estimate the commutation state and operate the high-precision position control for the ETC module and the high response characteristics. The validity of the proposed method is examined through the experimental results.

A Study on Energy Saving Hydraulic Cylinder System Using Hydraulic Transformer (유압 트랜스포머를 이용한 유압 실린더의 에너지 절감에 관한 연구)

  • Lee, Min-Su;Cho, Yong-Rae;Yoon, Hong-Soo;Ahn, Kyoung-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.49-56
    • /
    • 2008
  • In order to reduce energy consumption, secondary controlled system has been applied to many types of equipments. In lifting equipments or press machines using hydraulic cylinder, a hydraulic transformer is used as a control component instead of a valve for motion control and a component for recovering potential energy of load. The transformer is a combination of a variable displacement pump/motor as a secondary controlled element and a fixed displacement pump/motor. In this paper the effect of transformer is studied. Multiple closed loop controllers with displacement feedback of variable pump/motor, speed feedback and position feedback of cylinder are used. The efficiency and energy consumption when cylinder is driven up and down is calculated by simulation. Simulation results show that considerable energy saving is achieved by choosing load ratio, circuit type and supply pressure.

The Characteristics of a Bypass Air Conditioning System for Load Variation (부하변동에 대한 바이패스 공조시스템의 특성)

  • 김보철;신현준;김정엽
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.240-246
    • /
    • 2002
  • Bypass air conditioning systems are divided into three types; an outdoor air bypass, a mixed air bypass and a return air bypass system. What makes the return air by pass system more effective is that it directs all of moist outdoor air through the cooling coil. The bypass air conditioning system can maintain indoor R.H (Relative Humidity) less than a conventional CAV (Constant Air Volume) air conditioning system by adjusting face and bypass dampers at part load. When a design sensible load (the ratio of sensible load to total sensible load) is 70 percent (at this time, RSHF (Room Sensible Heat Factor) . 0.7), indoor R.H was maintained 59 percent by the return air bypass system, but 65 percent by the conventional CAV air conditioning system (valve control system). The bypass air conditioning system can also improve IAQ (Indoor Air Quality) in many buildings where the number of air change is high.