• Title/Summary/Keyword: Ratio Correction Factor

Search Result 189, Processing Time 0.026 seconds

Preshear Influence for Liquefaction Resistance in Sand (사질지반에서 액상화 저항에 대한 선행전단응력의 영향)

  • 윤여원;김한범;김방식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.315-322
    • /
    • 2003
  • Cyclic simple shear tests were performed to find out the effect of preshear on dynamic strength of the sandy soil. Tests were performed for the specimens with 40% and 60% of relative density, under three different effective vertical stress of 50, 100 and 200kPa. For 50 and 100kPa, preshear ratios 0.00, 0.08, 0.12 and 0.16 were given, respectively, For low and high relative densities, two different results are shown in dynamic tests. Under the dense conditions, the maximum shear stress ratio($\tau$$\_$cyc//$\sigma$$\_$vo/) and the cyclic shear stress ratio($\tau$$\_$cyc//$\sigma$$\_$vo/) causing a certain shear strain increase with augmenting preshear ratio(${\alpha}$). However, the maximum shear stress ratio and the cyclic shear stress ratio increase or decrease with increasing preshear ratio under the loose conditions. Correction factor(K$\_$${\alpha}$/) for preshear increases at an early stage and then decreases with increasing preshear ratio at loose condition and increase with increasing preshear ratio at dense condition. Correction factor (K$\_$${\alpha}$,Max/) for preshear increases with the increasing preshear ratio irrespective of relative density, and the value of has same behavior as K$\_$${\alpha}$/.

  • PDF

A Simple Grid-Voltage-Sensorless Control Scheme for PFC Boost Converters

  • Nguyen, Cong-Long;Lee, Hong-Hee;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.712-721
    • /
    • 2014
  • This paper introduces a simple grid-voltage-sensorless control scheme for single-phase power factor correction (PFC) boost converters. The grid voltage waveform is obtained based on the dc output voltage, the switching duty ratio, and a phase-lead compensator. In addition, the duty ratio feedback is utilized to obtain the unity input power factor and the zero harmonic current. The proposed control scheme is designed and mathematically analyzed based on a small-signal model of PFC boost converters. To verify the effectiveness of the proposed control scheme, several simulations and experiments are carried out in two applications: an industrial power system with a 60 Hz grid frequency and a commercial aircraft application with a 400 Hz grid frequency.

A Note on Test for Model Adequacy in Nonlinear Regression

  • Kahng, Myung-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.3
    • /
    • pp.689-694
    • /
    • 2004
  • We investigate the test for model adequacy in nonlinear regression. We can expect the usual likelihood ratio statistic to be unaffected by any parametric- effect curvature; only the effect of intrinsic curvature needs to be considered. Multiplicative correction factor is derived for the limiting distribution of test statistic, which is a function of the intrinsic curvature arrays.

  • PDF

Simple Method of Analysis for Concrete Slab Bridges by the Specially Orthotropic Laminates Theory (특별직교이방성 적층판이론에 의한 콘크리트 슬래브교량의 간편해석법)

  • Han, Bong-Koo;Suck, Jun-Ho
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.59-65
    • /
    • 2010
  • The simple supported reinforced concrete slab bridges are analyzed by the specially orthotropic laminates theory. This method, however, may be too difficult for some practising engineers. In this paper, the result of analysis for such plate by means of the beam theory with unit width is reported. By using the "correction factor", the accurate solution for the plate can be obtained by the beam theory. By using the "correction factor", the accurate solution for the plate can be obtained by the beam theory. The plate aspect ratio considered is from 1 : 1 to 1 : 6. The result of this paper can be used for simply supported slab bridges analysis.

  • PDF

Evaluation of Bond Strength Properties with Changing the Aspect Ratio and Temperature of Concrete (콘크리트의 형상비 및 온도변화에 따른 부착강도 특성평가)

  • Kim, Hyun Seok;Jung, Won Kyong;Oh, Han Jin;Park, Jun Young;Kim, Hyung Bae
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.19-26
    • /
    • 2018
  • PURPOSES : The main purpose of this study is suggest of field bond strength evaluation method for more objective evaluation method through Evaluation of Bond Strength Properties with changing aspect ratio and temperature. METHODS : The evaluation is laboratory bond strength test. Using the core machine, the pull-off test method ; the bond strength test of interface layer the universal testing machine. RESULTS : As a result of the laboratory bond strength evaluation, it was verified that the bond strength by aspect ratio decreases linearly with increasing aspect ratio and the bond strength properties by temperature change existed at high and low temperature condition relative to odinary temperature condition. CONCLUSIONS : According to the results of laboratory bond strength evaluation, the field bond strength evaluation results suggest applying the proposed correction factor (0.8, 1.0, 1.4, 1.9) according to aspect ratio(0.5, 0.1, 1.5, 2.0), For more objective evaluation of the bond strength, it is analyzed that the evaluation value is within $6{\sim}32^{\circ}C$ and the result can be obtained within 5% of the coefficient of variation.

Interleaved Boost-Flyback Converter with Boundary Conduction Mode for Power Factor Correction

  • Lin, Bor-Ren;Chien, Chih-Cheng
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.708-714
    • /
    • 2012
  • This paper presents a new interleaved pulse-width modulation (PWM) boost-flyback converter to achieve power factor correction (PFC) and regulate DC bus voltage. The adopted boost-flyback converter has a high voltage conversion ratio to overcome the limit of conventional boost or buck-boost converter with narrow turn-off period. The proposed converter has wide turn-off period compared with a conventional boost converter. Thus, the higher output voltage can be achieved in the proposed converter. The interleaved PWM can further reduce the input and output ripple currents such that the sizes of inductor and capacitor are reduced. Since boundary conduction mode (BCM) is adopted to achieve power factor correction, power switches are turned on at zero current switching (ZCS) and switching losses are reduced. The circuit configuration, principle operation, system analysis, and design consideration of the proposed converter are presented in detail. Finally, experiments conducted on a laboratory prototype rated at 500W were presented to verify the effectiveness of the converter.

A Study of Stability Analysis for Exit Light (유도등의 안정성 해석에 관한 연구)

  • Jung, Jong-Jin;SaKong, Seong-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.81-85
    • /
    • 2008
  • In this study, Standards of Lighting Appliance and Standard of Model Approval and Inspection Technology for EXIT LIGHT are compared so as to analyze stability of a exit light which is fire product. Test items, which are not included in Standard of Model approval and Inspection Technology for EXIT LIGHT, are deduced from aforementioned comparison and analysis. Also the derived test items are experimented with a exit light. For a power factor correction, a power factor correction circuit is designed and power factor, crest factor, asymmetry ratio, luminance variation are analyzed. In order to show the validity of designed circuit, current waveform and voltage waveform are measured.

Investigation of dynamic P-Δ effect on ductility factor

  • Han, Sang Whan;Kwon, Oh-Sung;Lee, Li-Hyung
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.249-266
    • /
    • 2001
  • Current seismic design provisions allow structures to deform into inelastic range during design level earthquakes since the chance to meet such event is quite rare. For this purpose, design base shear is defined in current seismic design provisions as the value of elastic seismic shear force divided by strength reduction factor, R (${\geq}1$). Strength reduction factor generally consists of four different factors, which can account for ductility capacity, overstrength, damping, and redundancy inherent in structures respectively. In this study, R factor is assumed to account for only the ductility rather than overstrength, damping, and redundancy. The R factor considering ductility is called "ductility factor" ($R_{\mu}$). This study proposes ductility factor with correction factor, C, which can account for dynamic P-${\Delta}$ effect. Correction factor, C is established as the functional form since it requires computational efforts and time for calculating this factor. From the statistical study using the results of nonlinear dynamic analysis for 40 earthquake ground motions (EQGM) it is shown that the dependence of C factor on structural period is weak, whereas C factor is strongly dependant on the change of ductility ratio and stability coefficient. To propose the functional form of C factor statistical study is carried out using 79,920 nonlinear dynamic analysis results for different combination of parameters and 40 EQGM.

BIDIRECTIONAL FACTOR OF WATER LEAVING RADIANCE FOR GOCI

  • Han, Hee-Jeong;Ahn, Yu-Hwan;Ryu, Joo-Hyung
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.79-81
    • /
    • 2006
  • Geostationary ocean satellite, unlike other sun-synchronous polar-orbit satellites, will be able to take a picture of a large region several times a day (almost with every one hour interval). For geostationary satellite, the target region is fixed though the location of sun is changed always. Thus, the ocean signal of a given target point is largely dependent on time. In other words, the ocean signal detected by geostationary satellite sensor must translate to the signal of target when both sun and satellite are located in nadir, using another correction model. This correction is performed with a standardization of signal throughout relative geometric relationship among satellite - sun - target points. One signal value of a selected pixel point of the target region of Geostationary Ocean Colour Imager (GOCI) would be set up as a standard, and the ratio of all remained pixel point can be calculated. This relative ratio called bidirectional factor, the result of modelling of spatiotemporal variation of bidirectional factor is shown.

  • PDF

Segmental Deformity Correction after Balloon Kyphoplasty in the Osteoporotic Vertebral Compression Fracture

  • Lee, Jung-Hoon;Kwon, Jeong-Taik;Kim, Young-Baeg;Suk, Jong-Sik
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.5
    • /
    • pp.371-376
    • /
    • 2007
  • Objective : Balloon kyphoplasty can effectively relieve the symptomatic pain and correct the segmental deformity of osteoporotic vertebral compression fractures. While many articles have reported on the effectiveness of the procedure, there has not been any research on the factors affecting the deformity correction. Here, we evaluated both the relationship between postoperative pain relief and restoration of the vertebral height, and segmental kyphosis, as well as the various factors affecting segmental deformity correction after balloon kyphoplasty. Methods : Between January 2004 and December 2006, 137 patients (158 vertebral levels) underwent balloon kyphoplasty. We analyzed various factors such as the age and sex of the patient, preoperative compression ratio, kyphotic angle of compressed segment, injected PMMA volume, configuration of compression, preoperative bone mineral density (BMD) score, time interval between onset of symptom and the procedure, visual analogue scale (VAS) score for pain rating and surgery-related complications. Results : The mean postoperative VAS score improvement was $4.93{\pm}0.17$. The mean postoperative height restoration rate was $17.8{\pm}1.57%$ and the kyphotic angle reduction was $1.94{\pm}0.38^{\circ}$. However, there were no significant statistical correlations among VAS score improvement, height restoration rate, and kyphotic angle reduction. Among the various factors, the configuration of the compressed vertebral body (p=0.002) was related to the height restoration rate and the direction of the compression (p=0.006) was related with the kyphotic angle reduction. The preoperative compression ratio (p=0.023, p=0.006) and injected PMMA volume (p<0.001, p=0.035) affected both the height restoration and kyphotic angle reduction. Only the preoperative compression ratio was found to be as an independent affecting factor (95% CI : 1.064-5.068). Conclusion : The two major benefits of balloon kyphoplasty are immediate pain relief and local deformity correction, but segmental deformity correction achieved by balloon kyphoplasty does not result in additional pain relief. Among the factors that were shown to affect the segmental deformity correction, configuration of the compressed vertebral body, direction of the most compressed area, and preoperative compression ratio were not modifiable. However, careful preoperative consideration about the modifiable factor, the PMMA volume to inject, may contribute to the dynamic correction of the segmental deformity.