• Title/Summary/Keyword: Rating Curves

Search Result 83, Processing Time 0.028 seconds

Development of Deduct Value Curves for the Pavement Condition Index of Asphalt Airfield Pavement (아스팔트 공항포장의 PCI 산출을 위한 공제값 곡선 개발)

  • Lee, Kang-Jin;Seo, Young-Chan;Cho, Nam-Hyun;Park, Dae-Wook
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.37-44
    • /
    • 2013
  • PURPOSES: This study is to develop the deduct value curves for the calculation of pavement condition index of asphalt airfield pavement. METHODS: To develop the deduct value curves of asphalt airfield pavement, panel rating was conducted to decide the pavement condition based on pavement distress type, severity, and density. RESULTS: Results show that standard deviation of deduct values by panel rating is increased at higher severity level and as damage density increases. The deduct value of alligator cracking show the highest. CONCLUSIONS: The deduct value curves based on panel rating could be used without existing problems which were occurred in Shahin's method.

A Basic Study of Stage-discharge Rating Stabilization at the Ssang-chi Gauging Station (쌍치 수위관측소의 수위-유량관계곡선 안정화를 위한 기초 연구)

  • Lee, Jeong-Ju;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1B
    • /
    • pp.81-87
    • /
    • 2010
  • On the SSang-chi gauging station, the discharge had been measured by the rod float method for the past twelve years. However the shifts of the rating curves are too big to be accepted. The major factors of rating curve variation were reviewed for shift analysis. To estimate the discharge measured by rod float method, two cross sections and their stages are generally required. But, the rating curves had been derived only with the observed depth of gauging station since the cross sections were not available. To correct the errors, the reference rating curve was developed. In this study, the water surface slopes of the curve were simulated by RMA2 model. The historical rating curves were re-developed by the calculated discharges on the base of the water surfaces. The results show that the range of fluctuation decreased and rating curves in recent years are physically reasonable.

Development of Rating Curves Using a Maximum Likelihood Model (최우도 모형을 이용한 수위-유량곡선식 개발)

  • Kim, Gyeong-Hoon;Park, Jun-Il;Shin, Chan-Ki
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.4
    • /
    • pp.83-93
    • /
    • 2008
  • The non-linear least squares model(NLSM) has long been the standard technique used by hydrologists for constructing rating curves. The reasons for its adaptation are vague, and its appropriateness as a method of describing discharge measurement uncertainty has not been well investigated. It is shown in this paper that the classical method of NLSM can model only a very limited class of variance heterogeneity. Furthermore, this lack of flexibility often leads to unaccounted heteroscedasticity, resulting in dubious values for the rating curve parameters and estimated discharge. By introducing a heteroscedastic maximum likelihood model(HMLM), the variance heterogeneity is treated more generally. The maximum likelihood model stabilises the variance better than the NLSM approach, and thus is a more robust and appropriate way to fit a rating curve to a set of discharge measurements.

Sediment Estimation of Large Reservoir Using Daily Flowrate Analysis (일유량 분석을 이용한 대규모 저수지의 퇴사량 추정)

  • 정재성
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.417-423
    • /
    • 1997
  • The objective of this study Is to supply basic data for large reservoir sedimentation research In future and make suggestions to maintain and opera능 the reservoir more of efficiently. At first, previous studios about the estimation of sediment yield rate were reviewed in Korea. And the discharge rating curves of upstream stage gauging stations and the correlation between dam Inflow and stage discharge were analyzed. With the analysis results, the spec유c sediment rate of Soyanggang dam was estimated as 608 m3/km2/yr. It was similar to that of Soyanggang dam feasibility study and 1994's field surveys of the reservoir than that of 1983's field surveys. Because the sediment rating curves were derived under the low discharge conditions, It needs to be checked under the flood conditions. However, the suggested methods such as flowrate analysis and sediment estimation will be useful to the sediment studios In future. Key words . reservoir sediment, sediment yield rate, rating curve, flowrate analysis.

  • PDF

A Monte Carlo Simulation and 1D Hydraulic Model-Based Approach for Estimating River Discharge at the Confluence using Artificial Multi-Segmented Rating Curves (K-RIVER와 Monte Carlo 방법을 이용한 홍수기 간접유량 추정 기법)

  • 강한솔;김연수;노준우;허영택;변지선;안현욱
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.483-483
    • /
    • 2023
  • 2020년 8월 섬진강 유역에서 100년 빈도 이상의 대홍수가 발생함에 따라 제방이 붕괴되거나 하천 범람이 발생하는 피해가 발생하였다. 8월 홍수를 대상으로 섬진강 본류 남원(신덕리) 수위국에서 기존의 수위-유량 관계 곡선식(이하 Rating curve)의 최대 적용 가능 수위는 2.53m 이지만, 해당 기간 첨두 수위는 10m 이상을 기록하였다. 이러한 대홍수의 경우 기왕의 관측데이터가 없을 뿐만 아니라 기존의 Rating curve를 외삽하여 활용하는 것에도 한계가 있어 간접적으로 유량을 산정할 수 있는 기법이 필요하다. 본 연구에서는 이와 같이 유량측정이 어려운 지점을 대상으로 주어진 유량에 대하여 수위를 재현할 수 있는 K-water에서 개발된 K-River모형(1차원 하천수리해석모형)과 Monte Carlo 시뮬레이션 기법을 활용하여 간접적으로 유량을 산정할 수 있는 기법을 개발하였다. 개발된 방법론은 고수위 구간에 대한 Rating curve의 불확실성으로 인하여 본류와 지류의 유입량 추정이 어려웠던 섬진강 요천 합류부에 적용하였다. 대상구간은 본류(섬진강) 26km 및 지류(요천) 15km로 구성되어 있으며, 본류와 지류의 상류인 수위국 남원(신덕리) 관측소와 남원(동림교) 관측소에는 각각 기존의 Rating curve가 존재한다. 불확실성이 높은 Rating curve의 고수위 구간에 대한 매개변수를 조정하여 다수의 Rating curve를 생성하고, 이를 기반으로 관측수위를 다수의 상류 시계열 유량자료(경계조건)로 환산하였다. 다음으로 이 유량자료를 기반으로 앙상블 모의를 수행 후 대상구간의 중간지점에 위치한 수위국(고달(고달교) 관측소, 송동(요천대교) 관측소, 곡성(금곡교) 관측소)에서 수위재현성(NSE, RSR등 활용)을 평가하여 최적 샘플 추출을 추출하였다. 추출된 샘플로부터 상류 경계지점의 적정 Rating curve 선정과 각 지점에서의 시계열 수위 및 유량을 역으로 추정하였다. 이를 통해 실제 유량측정결과 없이도 간접적으로 신뢰도 높은 유량 자료를 확보할 수 있음을 확인할 수 있었으며, 향후 수자원의 효율적 관리 및 홍수관리를 위하여 효율적으로 활용이 가능할 것으로 생각된다.

  • PDF

An Application of a New Two-Way Regression Model for Rating Curves (수위-유량관계식에 새로운 양방향 회귀모형의 적용)

  • Lee, Chang-Hae
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.1
    • /
    • pp.17-25
    • /
    • 2008
  • Whether rating curves are used in practice or new ones are derived, the characteristics of regression analysis are often neglected. For example, a discharge rating curve, which is established from a regression of observed water levels (H) on observed flowrates(Q), is sometimes used for estimating a design water level corresponding to a simulated design flood runoff. However, if independent and dependent variables are changed with each other, the regression equation is changed in existing regression analysis, which is derived from vertical errors between observed data and regression line. Thus, regression equations should not be applied inversely. To avoid this problem, A new two-way variable least-squares regression analysis is proposed. The new method was applied to the rating curves of five water level stations on main stream of Nakdong River. The three kinds of regression models, which are respectively regression of Q versus H (model 1), H versus Q (model 2) and two-way (model 3), showed that the new method can reduce inadvertent mistakes when applied in practice.

Improving HSPF Model's Hydraulic Accuracy with FTABLES Based on Surveyed Cross Sections (실측 하천 단면자료를 이용한 HSPF 유역모델의 수리정확도 개선)

  • Shin, Chang Min
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.582-588
    • /
    • 2016
  • The hydrological simulation program FORTRAN (HSPF) is a comprehensive watershed model that employs the hydraulic function table (FTABLE) (depth-area-volume-flow relationship) to represent the geometric and hydraulic properties of water bodies. The hydraulic representation of the HSPF model mainly depends on the accuracy of the FTABLES. These hydraulic representations determine the response time of water quality state variables and also control the scour, deposition, and transport of sediments in the water body. In general, FTABLES are automatically generated based on reach information such as mean depth, mean width, length, and slope along with a set of standard assumptions about the geometry and hydraulics of the channel, so these FTABLES are unable to accurately describe the geometry and hydraulic behavior of rivers and reservoirs. In order to compensate the weakness of HSPF for hydraulic modeling, we generated alternate method to improve the accuracy of FTABLES for rivers, using the surveyed cross sections and rating curves. The alternative method is based on the hydraulics simulated by HEC-RAS using the surveyed cross sections and rating curves, and it could significantly improve the accuracy of FTABLES. Although the alternate FTABLE greatly improved the hydraulic accuracy of the HSPF model, it had little effect on the hydrological simulation.

Adjusted ROC and CAP Curves (조정된 ROC와 CAP 곡선)

  • Hong, Chong-Sun;Kim, Ji-Hun;Choi, Jin-Soo
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.1
    • /
    • pp.29-39
    • /
    • 2009
  • Among others, ROC and CAP curves are used to explore the discriminatory power between the defaults and non-defaults, based on the distribution of the probability of default in credit rating works. ROC and CAP curves are plotted in terms of various ratios of the probability of default. Each point on ROC and CAP curves is calculated according to cutting points (scores) for classifying between defaults and non-defaults. In this paper, adjusted ROC and CAP curves are proposed by using functions of ratios of the probability of default. It is possible to recognize the score corresponding to a point oil these adjusted curves, and we can identify the best score to show the optimal discriminatory power. Moreover, we discuss the relationships between the best score obtained from the adjusted ROC and CAP curves and the score corresponding to Kolmogorov - Smirnov statistic to test the homogeneous distribution functions of the defaults and non-defaults.

Pollutant Loading Estimates from Watershed by Rating Curve Method and SWMM

  • Jeon, Ji-Hong;Yoon, Chun-Gyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.419-425
    • /
    • 2000
  • Rating curve method and SWMM (Storm Water Management Model) were applied to estimate pollutant loading from Hwa-Ong watershed in Kyunggi-Do. Rating curves were derived from sampling sites and applied to the whole watershed. SWMM version 4.4 was calibrated by field data of sampling sites and applied to the whole watershed. The pollutant loading estimated by rating curve was slightly higher than the one by SWMM, but the difference was not significant considering diffuse pollution characteristics of wide variation. Land use effect of the subcatchments could not be incorporated logically in rating curve method and difficulty in extrapolation was experienced, therefore, the estimate by rating curve method was thought to be less confident. SWMM was satisfactory in estimation of pollution loading, and its great flexibility worked well to describe complex nonurban land uses. Neither of them could exactly describe complex natural phenomena, but SWMM was preferred in this study due to its flexibility and logical hydrologic processes including land use effects. Use of reasonable watershed model rather than rating curve method for watershed pollutant loading estimate can be more practical and is recommended.

  • PDF

Study on the Cheonggyecheon through the hydrological monitoring and GIS (수문관측 및 GIS를 이용한 청계천 모니터링 연구)

  • Jeong, Chang-Sam;Bae, Deg-Hyo;Kim, Mun-Mo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1464-1468
    • /
    • 2007
  • The restoration project of Cheonggyecheon was conducted to creates the refreshing water-friendly environment in the downtown Seoul. It already have passed almost 2 years after restoration. This project changed environment of Cheonggyecheon dramatically, so historic hydrological data became useless. There are not so many hydrological data to manage and control this newly restored urban stream. The main purpose of this study is collecting and analysing the hydrological data of Cheonggyecheon. At first, we analysed the mechanism of Cheonggyecheon discharge using the sewage design maps and some GIS data. We also monitored the water levels and discharges of 5 main points of Cheonggyecheon. Rating curves of these 5 points were derived. There were 249 blocks of water gates which were located at both sides of bank. We also monitored the behaviors of these water gates. Through the these monitorings, some equations were derived to give useful information to the manager of Cheonggyecheon.

  • PDF