• Title/Summary/Keyword: Rates of application

Search Result 1,865, Processing Time 0.03 seconds

Elution Patterns and Hydraulic Conductivity Depending on the Incorporated Organic Matter Contents in a Multi-Layered Soil Column (토양내 유기물 함량 변화에 따른 다층 토주의 수리전도도 및 용출 경향)

  • Chung, Doug Young
    • Korean Journal of Agricultural Science
    • /
    • v.27 no.2
    • /
    • pp.125-134
    • /
    • 2000
  • This observation was to investigate the influence of raw organic matter incorporated into soil at various rates on hydraulic conductivity and elution of solute throughout soil column. Generally the organic matter content in a practical agricultural field was approximately 3%. However, the application rate of organic matter in the field tends to rapidly increase in these days. Therefore, we raised the application rate of organic matter up to 10% in this investigation. From the experiment, we found that the hydraulic conductivities rapidly decreased with increasing rate of organic matter as well as rapid decrease in total volume of eluent during the same period. And electrical conductivities in the effluent significantly decreased after 2 pore volume, resulting in approaching to the criteria of saline soli. From this we could assume that the organic matter may influence the crop growth in the beginning. However excessive irrigation in the field may cause saturation of soil leading to reduction of soil. Therefore, there must be a management methods in application of organic matter with respect to soil water control.

  • PDF

Optimal Timing and Duration of Cold Application for Breaking Diapause in Queens of the Bumblebee Bombus ignitus

  • Yoon, Hyung Joo;Lee, Kyeong Yong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.28 no.2
    • /
    • pp.51-57
    • /
    • 2014
  • Bumblebees are important pollinators of crops and wildflowers. The Korean native bumblebee, Bombus ignitus, undergoes one generation per year, and induction of artificial hibernation is essential for year-round rearing of the bumblebee. Keeping queens under cold treatment conditions for several mo is an effective method for terminating their diapause and promoting colony development. In the present study, we investigated how the timing and duration of chilling affect the artificial hibernation of B. ignitus queens. In the timing assessment, cold treatment was instituted at 12 d, 40 d, or 100 d after eclosion under a constant temperature of $5^{\circ}C$ and 80% humidity. The queens that entered cold treatment at 12 d after emergence evidenced the highest survival rates: 86.7% at two mo, 73.3% at three mo, and 46.4% at 4 mo. Survival rates were reduced under storage conditions at 12 d, 40 d, and 100 d after emergence. When queens were subjected to chilling at 8 d, 12 d, or 16 d after eclosion with constant 80% humidity, the queens stored at 12 d after eclosion exhibited the highest survival rates, which were 84.6 at one mo, 25.0% at two mo, and 7.9% at three mo. In regards to the duration of the cold period, the queens that hibernated for at least two mo evidenced optimal colony development rates. The rates of oviposition, colony foundation, and progeny-queen production of queens hibernated for two mo were 60.0%, 30.0%, and 13.3%, respectively. These values were 6.0 to 13.3 times higher than those in the queens that hibernated for 15 d. Therefore, a cold period of at least 2 mo applied 12 d after emergence were found to be the most favorable conditions for diapause break in B. ignitus queens.

THE ROLE OF GINSENG DRYING IN THE HARVEST AND POST-HARVEST PRODUCTION SYSTEM FOR AMERICAN GINSENG

  • Bailey W.G.;Dalfsen K.B. van;Guo Y.
    • Proceedings of the Ginseng society Conference
    • /
    • 1993.09a
    • /
    • pp.155-163
    • /
    • 1993
  • An American ginseng(Panax quillquefolium L) industry has emerged in British Columbia, Canada over the past ten years. Interest has grown very rapidly and with this development, attention is now moving away from field production issues and emphasis is being directed to enhancements in ginseng storage, drying and processing. There is a dearth of knowledge on these aspects even though they are crucial to international competitiveness. Enhancement dicatates the application of a systems approach to optimizing the harvest and post - harvest production system(crop digging, pre - washing cold storage. washing, drying and post - drying storage). Research in British Columbia to date has focussed on drying and storage issues and has resulted in the design of an enhanced commercial drying system. The role of dryer management, loading rates, airflow rates and pre - drying cold storage on American ginseng root drying rates and root quality were examined. From the dryer management experiments, there are distinct advantages to size sorting root to yield optimum drying rates. If unsorted root is used, efficiency is increased if the trays are systematically rotated. Loading rate experiments illustrate that increasing rates above those currently used in commercial dryers are possible without any sacrifice in quality. This has significant implications for commercial drying. Pre - drying cold storage is a most significant tool for managing drying operations. Over a period of six weeks, no discernable decrease in quality was found as a consequence of cold storage. Further, the moisture loss and the associated root surface changes(loss of surface soil in storage for example) provide new challenges for root quality management. Continued research and technological innovation will be crucial in addressing the demanding challenges of the future.

  • PDF

EPIC Simulation of Water Quality from Land Application of Poultry Litter

  • Yoon, Kwang-Sik
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.38-49
    • /
    • 2000
  • Two application rates (9 and 18 t/ha) of poultry litter and a recommended rate of commercial fertilizer were studied to determine their effects on nutrient (N and P) losses in surface and subsurface runoff and loadings in soil layers from conventionally-tilled com by the treatments. The model predicted higher sediment losses than observed data from all treatments. The overpredicted sediment losses resulted in overprediction of organic-N and sediment-P losses in surface runoff. Simulated soluble-P losses in surface runoff were close to observed data, while NO3-N losses in surface runoff were underpredicted from all treatments. Observed NO3-N concentrations in leachate at 1.0-m depth from commercial fertilizer treatment were fairly well predicted. But the concentratins were overpredicted from poultry litter treatments due to high simulation of organic-N mineralization simulated by the model.

  • PDF

Respiration Rate and Oxygen Intake by Change of Wheelchair Backrest Angle

  • Chae, Soo-Young;Kwon, Hyuk-Cheol;Jeong, Dong-Hoon;Kong, Jin-Yong;Koo, Hyun-Mo
    • Physical Therapy Korea
    • /
    • v.12 no.4
    • /
    • pp.26-32
    • /
    • 2005
  • This study was purposed to provide basic information on the correct application of a wheelchair's backrest angle by investigating the change in cardiopulmonary function according to backrest angle during propulsion. This study examined the effects of the wheelchair's backrest angle on the cardiopulmonary function by varying the angle to $0^{\circ}$, $10^{\circ}$ and $20^{\circ}$ with a propulsion velocity of 60 m/min. The experimental parameters were respiration rate, oxygen consumption rate and oxygen consumption rate/kg which were measured by a portable wireless oxygen consumption meter (COSMED, $K4b^2$). The results of the study were as follows: 1) There were no statistically significant differences in respiration rates due to changes in the wheelchair backrest angle (p>.05). 2) There were statistically significant differences in oxygen consumption rates due to changes in the wheelchair backrest angle (p<.05). 3) There were also statistically significant differences in the oxygen consumption rate/kg due to changes in the wheelchair backrest angle (p<.05). In conclusion, changes in the backrest angle of wheelchairs during propulsion influences oxygen consumption rates and heart rates, while respiration rates are not affected. Therefore, a training program for good seating and posture needs to be provided, and the wheelchair seating system should be equipped with the unadjustable-angle wheelchair to reduce the functional load on the cardiopulmonary system.

  • PDF

Study on Rate Dependent Fracture Behavior of Structures; Application to Brittle Materials Using Molecular Dynamics (구조물의 속도 의존적 파괴 특성에 대한 연구; 입자동역학을 이용한 취성재료에의 적용)

  • Kim, Kunhwi;Lim, Jihoon;Llim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.529-536
    • /
    • 2008
  • The failure behavior of structures is changed under different loading rates, which might arise from the rate dependency of materials. This phenomenon has been focused in the engineering fields. However, the failure mechanism is not fully understood yet, so that it is hard to be implemented in numerical simulations. In this study, the numerical experiments to a brittle material are simulated by the Molecular Dynamics (MD) for understanding the rate dependent failure behavior. The material specimen with a notch is modeled for the compact tension test simulation. Lennard-Jones potential is used to describe the properties of a brittle material. Several dynamic failure features under 6 different loading rates are achieved from the numerical experiments, where remarkable characteristics such as crack roughness, crack recession/arrest, and crack branching are observed during the crack propagation. These observations are interpreted by the energy inflow-consumption rates. This study will provides insight about the dynamic failure mechanism under different loading rates. In addition, the applicability of the MD to the macroscopic mechanics is estimated by simulating the previous experimental research.

A New Direction of National Pension System for Aging : Different age insurance premium rate and income replacement rate application (노령화로 인한 국민연금의 새로운 제도 방향: 연령별 차등 보험료율, 소득대체율 적용)

  • Park, Sanghong;Kim, Eunsoo;Park, Yiseul;Lee, Jiyun;Jun, Doobae
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.201-206
    • /
    • 2018
  • The fourth fiscal estimate of the national pension following the aging of the population and falling yields estimated that the fund ran out in 2057, three years earlier than the third fiscal calculation. Accordingly, the government proposed a plan to immediately raise the insurance premium rate by 2 percent and maintain the income replacement rate by 45 percent, and to reduce the income replacement rate by 40 percent in 2028. In this form, increasing premiums and reducing income replacement rates will allow younger generations to sign up differently from existing subscribers, who previously had higher income replacement rates at lower rates. Therefore, the study aims to ease the burden on the elderly and younger by applying different insurance rates and income replacement rates for different ages.

Effects of Application Rates with Swine Liquid Manure on Rice Yield and Quality in Cheorwon Region (철원지역에서 가축분뇨 발효액비 시용수준이 벼의 수량과 품질에 미치는 영향)

  • Ryo, J.W.;Lee, B.O.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.1
    • /
    • pp.75-84
    • /
    • 2009
  • This study was carried out to determine the effect of swine liquid manure on the rice growth and yield in 2006. Field experiment was conducted under variable application rates; 100%, 120%, 150%, 180% N level of slurry based on 11 kg N 10a recommended amount of nitrogen. The experimental sites were located at Cheorwon in Gangwondo area. The results were summerized as follows; In the plot treated with swine liquid manure of 150% and 180% N levels, the plant height and tillers were higher, and the color of leaf was darker than that of 100% N level of swine liquid manure. Rice yield in the plot applied with 120% N slurry level was increased at 11%, but those of 150%, 180% N-level application plots were reduced 10, 19% compared to 100% N level, respectively. Rice quality of the 100 and 120% application plots of swine liquid manure was significantly better than those of 150 and 180% levels of application plots. Total nitrogen content in rice plant after harvesting was increased with increasing levels of swine liquid manure. The content of K in the soil was accumulated in plot treated with 150%, 180% slurry compared to control plot. The heavy metal contents in soils were not increased treated with swine liquid manure. The density of bacteria was low in the application plot of 180%N of liquid swine manure. The bacteria/fungi ratio was highest in 120% N level of liquid manure treatment.

  • PDF

Ammonia Gas Emission Factor at different Application Rate of Urea in Chinese Cabbage Cultivation (배추 재배지에서 요소시비에 따른 암모니아 배출계수 산정)

  • Lee, Su-Lim;Lee, Jae-Hoon;Rho, Jun-Suk;Park, Yu-Jin;Choi, Ah-Young;Kim, Sin-Sil;Lee, Seul-Rin;Park, Jong-Hwan;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • BACKGROUND: The main source of ammonia in soils, South Korea is agricultural emissions (e.g., fertilizer application and livestock manure), with the recent emission inventories reporting them to be approximately 80% of the total emissions. Ammonia as a pollutant is originated largely from agricultural activity and is an important contributor to air quality issues in South Korea. The importance of ammonia in agricultural land is also emerging. In this study, the characteristics of ammonia emission from Chinese cabbage cultivation fields with application rates of urea sere were evaluated. METHODS AND RESULTS: The ammonia emission characteristics were investigated at the different urea application rates (0, 160, 320, and 640 kg ha-1) and the ammonia emission factor in the Chinese cabbage cultivation field was calculated. As application rate of urea application increased, ammonia emissions increased proportionally. In 2020 and 2021, cumulative ammonia emissions with urea 320 kg ha-1 treatment were 39.3 and 35.2 kg ha-1, respectively for 2020 and 2021. When urea fertilizer was applied, the ammonia emission factors were 0.1217 and 0.1358 NH4+-N kg N kg-1 in 2020 and 2021, respectively. CONCLUSION(S): Ammonia emissions increased as application rate of urea increased, and the average ammonia emission factor of the Chinese cabbage cultivation field for two years was 0.129 NH4+-N kg N kg-1.

Influence of Nitrogen Application Rate on Growth and Dry Matter Yield of Achyranthes japonica Nakai (질소시비량이 쇠무릎의 생육 및 건물수량에 미치는 영향)

  • Kang, Young-Kil
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.2
    • /
    • pp.109-114
    • /
    • 2003
  • To determine the optimum N rate m Jeju island for utricle and root production of Achyranthes japonica Nakai, a medicinal plant, the plants were grown at two plant densities $(50\;and\;100\;hills/m^2$, two plants per hill; mall plots) at six N application rates (0, 6, 12, 18, 24, and 30 kg/10a; split plots) in 2001. There was no significant interaction between plant density and N application rate for all measured agronomic characters. Main root length and roots per hill were 5 and 52% greater, respectively, but N content of stover was lower under lower plant density compared to higher plant density. The other characters were not affected by plant density. N application rate did not significantly affect mall stem diameter, spikes per hill, spike length, utricles per spike, mall root length and diameter, and utricle N content. As N rate increased from 0 to 30 kg/10a, SPAD values and stover N content increased linearly from 35.0 to 40.5 and 1.09 to 1.38%, respectively, and plant height, branches per hill, stover, utricle and root dry matter yields, roots per hill, and top N yield increased quadratically. Spikes per hill were increased in a cubic manner with increased N application rates. N application rate for the maximum dry matter yield of utricle and root in A. japonica was estimated to be 21 kg N/10a.