• Title/Summary/Keyword: Rated wind speed

Search Result 100, Processing Time 0.019 seconds

Design Development Test for Composite Wind Turbine Blade (풍력발전기용 복합재 윈드터빈 블레이드의 설계 개발 시험)

  • Lee Chung-Hun;Jung Sung-Hoon;Park Ji-Sang;Kim Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.22-25
    • /
    • 2004
  • This paper describes method and procedure for DDT (Design Development Test) of composite wind turbine blade composites. The test type of DDT is bending test, such as cantilever beam, based on the rated wind speed of wind power generation system. DDT was carried out in order to compare with the result of FEM analysis, characterize structural stability, verify manufacturing process and review test method of full scale blade.

  • PDF

On the Analysis of Vertical-axis Wind Rotor (수직축 풍력발전기의 해석에 관하여)

  • ;;Lee, Chung-Oh
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.2
    • /
    • pp.60-67
    • /
    • 1979
  • Aerodynamic forces acting on a curved blade are computed theoretically taking into account the variation of wind speed over the blade to investigate the performance of a vertical axis wind rotor. It is shown that the rotor does not self start at the rated wind speed without a supplementary starting device and that most of the power output is contributed by the central portion of the rotor, and the use of spoilers for limiting the maximum rotational speed is needed for safety. It is also shown that provision of skew angle to the blade does not improve the starting characterstics and only reduces the maximum power output. The effects of geometric variables such as skew angle, blade solidity and ratio of the rotor height to diameter are also discussed.

A Reliability Evaluation Model for the Power Devices Used in Power Converter Systems Considering the Effect of the Different Time Scales of the Wind Speed Profile

  • Ji, Haiting;Li, Hui;Li, Yang;Yang, Li;Lei, Guoping;Xiao, Hongwei;Zhao, Jie;Shi, Lefeng
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.685-694
    • /
    • 2016
  • This paper presents a reliability assessment model for the power semiconductors used in wind turbine power converters. In this study, the thermal loadings at different timescales of wind speed are considered. First, in order to address the influence of long-term thermal cycling caused by variations in wind speed, the power converter operation state is partitioned into different phases in terms of average wind speed and wind turbulence. Therefore, the contributions can be considered separately. Then, in regards to the reliability assessment caused by short-term thermal cycling, the wind profile is converted to a wind speed distribution, and the contribution of different wind speeds to the final failure rate is accumulated. Finally, the reliability of an actual power converter semiconductor for a 2.5 MW wind turbine is assessed, and the failure rates induced by different timescale thermal behavior patterns are compared. The effects of various parameters such as cut-in, rated, cut-out wind speed on the failure rate of power devices are also analyzed based on the proposed model.

Development of an Analysis Program for Small Horizontal Wind Turbines Considering Side Furling and Optimal Torque Scheduling (사이드 펄링과 최적 토크스케줄을 고려한 소형 풍력터빈 해석 프로그램 개발)

  • Jang, Hyeon-Mu;Kim, Dong-Myeong;Paek, In-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.15-31
    • /
    • 2018
  • A program to design a small capacity wind turbine blade is proposed in this study. The program is based on a matlab GUI environment and designed to perform blade design based on the blade element momentum theory. The program is different from other simulation tools available in a point that it can analyze the side-furling power regulation mechanism and also has an algorithm to find out optimal torque schedule above the rated wind speed region. The side-furling power regulation is used for small-capacity horizontal axis wind turbines because they cannot use active pitch control due to high cost which is commonly used for large-capacity wind turbine. Also, the torque schedule above the rated wind speed region should be different from that of the large capacity wind turbines because active pitching is not used. The program developed in this study was validated with the results with FAST which is the only program that can analyze the performance of side-furled wind turbines. For the validation a commercial 10 kW wind turbine data which is available in the literature was used. From the validation, it was found that the performance prediction from the proposed simple program is close to those from FAST. It was also found that the optimal torque scheduling from the proposed program was found to increase the turbine power substantially. Further experimental validation will be performed as a future work.

Response of Torque Controller for a MW Wind Turbine under Turbulence Wind Speed (난류 풍속에 대한 MW급 풍력발전기의 토크 제어기 응답)

  • Lim, Chae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.173-180
    • /
    • 2017
  • The main objective of a torque controller below rated wind speed is to extract maximum power from the potential wind energy. To do this, the torque control method, which adjusts the torque magnitude and makes it proportional to the square of the generator speed, has been applied. However, this method makes the response slower as the wind turbines are getting larger in size with multi-MW capacities. In this paper, a torque control method that uses the nonlinear parameter of rotor speed for aerodynamic torque as a control gain is discussed to improve the response by adjusting an additional torque magnitude. The nonlinear parameter of the rotor speed could be calculated both online and offline. It is shown that the offline case is more practical and effective in producing power through the numerical simulation of a 2MW wind turbine by considering the real turbulence wind speed.

Design of Small-Scaled Permanent Magnet Generators for Wind Power Applications (풍력용 소용량 영구자석형 발전기의 설계)

  • Jang, Seok-Myeong;Choi, Jang-Young;Cho, Han-Wook;You, Dae-Joon;Kyoung, Nam-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.194-196
    • /
    • 2006
  • This paper deals with design of a small-scaled permanent magnet generator (PMG) for wind power applications. First, this paper determines rated power and rated speed of the PMG from measured characteristics of wind turbines. Second, we derive analytical solutions for the open-circuit field in order to determine optimum magnet thickness and pole pitch/arc ratio. Third, on the basis of open circuit field solutions, stator magnetic circuit is designed. And then, a diameter of stator coil which agree with a required current density is calculated, and its turns are determined from the area of slot. Finally, finite element (FE) method is employed for validity of the designed PMG and, the back-emf measurements are also given to confirm the design.

  • PDF

A Fuzzy PI Controller for Pitch Control of Wind Turbine (풍력 발전기 피치 제어를 위한 퍼지 PI 제어기)

  • Cheon, Jongmin;Kim, Jinwook;Kim, Hongju;Choi, Youngkiu;Jin, Maolin
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.28-37
    • /
    • 2018
  • When the wind speed rises above the rated wind speed, the produced power of the wind turbines exceeds the rated power. Even more, the excessive power results in the undesirable mechanical load and fatigue. A solution to this problem is pitch control of the wind turbines. This paper presents a systematic design method of a collective pitch controller for the wind turbines using a discrete fuzzy Proportional-Integral (PI) controller. Unlike conventional PI controllers, the fuzzy PI controller has variable gains according to its input variables. Generally, tuning the parameters of fuzzy PI controller is complex due to the presence of too many parameters strongly coupled. In this paper, a systematic method for the fuzzy PI controller is presented. First, we show the fact that the fuzzy PI controller is a superset of the PI controller in the discrete-time domain and the initial parameters of the fuzzy PI controller is selected by using this relationship. Second, for simplicity of the design, we use only four rules to construct nonlinear fuzzy control surface. The tuning parameters of the proposed fuzzy PI controller are also obtained by the aforementioned relationship between the PI controller and the fuzzy PI controller. As a result, unlike the PI controller, the proposed fuzzy PI controller has variable gains which allow the pitch control system to operate in broader operating regions. The effectiveness of the proposed controller is verified with computer simulations using FAST, a NREL's primary computer-aided engineering tool for horizontal axis wind turbines.

A Robust Pitch Control of Wind Turbine Systems (풍력 터빈 시스템의 강인 피치 제어)

  • Han, Myung-Chul;Sung, Chang-Min;Hwang, Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1287-1293
    • /
    • 2013
  • In this paper, we consider variable speed wind turbine systems containing uncertain elements. Though PI controller is generally used for pitch control, it cannot guarantee a stability and performance of the complicated wind turbine systems. A robust pitch control scheme is proposed to regulate the electric power output above the rated wind speed. The pitch controller is designed in order to guarantee uniform boundedness and uniform ultimate boundedness based on the bound values of the set where the uncertainties are laid or moves. In order to verify the proposed control scheme, we present stability analysis and simulation results using Matlab/Simulink.

Design of a Small-Scale Motor-Generator System for a Large Wind Turbine (대형 풍력발전기용 소형 모터-발전기 시스템 설계)

  • Lim, Chae Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.48-52
    • /
    • 2017
  • Small-scale motor-generator sets have been used in laboratories for verification of real large wind turbines whose rated power are more than 1 MW. In this paper, a result of designing a small-scale motor-generator system, which is composed of motor, gear box, flywheel, and generator, is presented in the aspect of speed response. Design objective is to make a small-scale motor-generator system have the same time constant and optimal tip speed ratio region as a real MW wind turbine. A small-scale 3.5 kW motor-generator system for emulating response of a 2 MW wind turbine is considered and designed.

A Study on Aerodynamic Analysis and Starting Simulation for Horizontal Axis Wind Turbine Blade (수평축 풍력발전용 회전날개의 공력성능 해석 및 시동특성 모사에 관한 연구)

  • 공창덕;방조혁;김학봉
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.40-46
    • /
    • 1999
  • Aerodynamic performance and starting characteristic of wind turbine blade are important factors that determine the whole system as rated power, operating method, etc. Therefore, starting characteristic according to aerodynamic performance, wind speed and blade pitch angle should be examined while wind turbine blade is designed. In this study, the aerodynamic analysis program of 750㎾ class horizontal axis wind turbine blade was developed and to certify this program, the aerodynamic performance of the commercialized blade was analyzed with it. The analysis result was corresponding to the value presented from manufacturer. And the starting analysis program was developed on the basis of the developed aerodynamic analysis program and starting analysis was performed. As a result, it was confirmed that variable speed operation and variable pitch control are profitable to wind turbine used in low wind speed as our country.

  • PDF