• Title/Summary/Keyword: Rated voltage

Search Result 398, Processing Time 0.027 seconds

A Study on Quasi Resonant Converter with Low Switching Surge Voltage Characteristics by Applying Auxiliary Winding Type Active Snubber (보조 권선형 능동 스너버를 적용하여 낮은 스위치 서지 전압 특성을 갖는 유사 공진형 컨버터에 관한 연구)

  • Ahn, Tae Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.56-61
    • /
    • 2018
  • In this paper, a new type of active snubber was proposed to lower the excessive rated voltage of the clamp capacitor which was a problem in the conventional circuit by applying auxiliary winding into the active snubber. A simplified equivalent circuit of the proposed snubber was derived by applying it to QR flyback converter, and the equivalent circuits for each switch state was shown under the steady-state condition. In addition, the maximum voltage of the clamp capacitor as well as the main switch was found by using the steady-state equations. In particular, it was found that the clamp capacitor voltage could be controlled by the auxiliary winding ratio. In order to verify the utility and practicality of the proposed converter with auxiliary winding type active snubber circuit, a prototype with an output voltage of 19V and a maximum load current of 6A was produced and the results were reported.

The AC, DC Dielectric Breakdown Characteristics according to Dielectric Thickness and Inner Electrode Pattern of High Voltage Multilayer Ceramic Capacitor (고압 적층 칩 캐패시터의 유전체 두께 및 내부전극 형상에 따른 AC, DC 절연 파괴 특성)

  • Yoon, Jung-Rag;Kim, Min-Kee;Lee, Seog-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1118-1123
    • /
    • 2008
  • High voltage multilayer ceramic capacitors (MLCCs) are classified into two classes-those for temperature compensation (class I) and high dielectric constant materials (class II). We manufactured high voltage MLCC with temperature coefficient characteristics of C0G and X7R and studied the characteristics of electric properties. Also we studied the characteristics of dielectric breakdown voltage (V) as the variation of thickness in the green sheet and how to pattern the internal electrodes. The dielectric breakdown by electric field was caused by defects in the dielectric materials and dielectric/electrode interface, so the dielectric thickness increased, the withstanding voltage per unit (E) thickness decreased. To overcome this problem, we selected the special design like as floating electrode and this design affected the increasing breakdown voltage(V) and realized the constant withstanding voltage per unit thickness(E). From these results, high voltage application of MLCCs can be expanded and the rated voltage can also be develop.

A Hybrid Modular Multilevel Converter Topology with an Improved Nearest Level Modulation Method

  • Wang, Jun;Han, Xu;Ma, Hao;Bai, Zhihong
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.96-105
    • /
    • 2017
  • In this paper, a hybrid modular multilevel converter (MMC) topology with an improved nearest level modulation method is proposed for medium-voltage high-power applications. The arm of the proposed topology contains N series connected half-bridge submodules (HBSMs), one full-bridge submodule (FBSM) and an inductor. By exploiting the FBSM, half-level voltages are obtained in the arm voltages. Therefore, an output voltage with a 2N+1 level number can be generated. Moreover, the total level number of the inserted submodules (SMs) is a constant. Thus, there is no pulse voltage across the arm inductors, and the SM capacitor voltage is rated. With the proposed voltage balancing method, the capacitor voltage of the HBSM is twice the voltage of the FBSM, and each IGBT of the FBSM has a relatively low switching frequency and an equalized conduction loss. The capacitor voltage balancing methods of the two kinds of SMs are implemented independently. As a result, the switching frequency of the HBSM is not increased compared to the conventional MMC. In addition, according to a theoretical calculation of the total harmonic distortion of the electromotive force (EMF), the voltage quality with the presented method can be significantly enhanced when the SM number is relatively small. Simulation and experimental results obtained with a MMC-based inverter verify the validity of the developed method.

Analysis, Design and Implementation of a Soft Switching DC/DC Converter

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.20-30
    • /
    • 2013
  • This paper presents a soft switching DC/DC converter for high voltage application. The interleaved pulse-width modulation (PWM) scheme is used to reduce the ripple current at the output capacitor and the size of output inductors. Two converter cells are connected in series at the high voltage side to reduce the voltage stresses of the active switches. Thus, the voltage stress of each switch is clamped at one half of the input voltage. On the other hand, the output sides of two converter cells are connected in parallel to achieve the load current sharing and reduce the current stress of output inductors. In each converter cell, a half-bridge converter with the asymmetrical PWM scheme is adopted to control power switches and to regulate the output voltage at a desired voltage level. Based on the resonant behavior by the output capacitance of power switches and the transformer leakage inductance, active switches can be turned on at zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. The current doubler rectifier is used at the secondary side to partially cancel ripple current. Therefore, the root-mean-square (rms) current at output capacitor is reduced. The proposed converter can be applied for high input voltage applications such as a three-phase 380V utility system. Finally, experiments based on a laboratory prototype with 960W (24V/40A) rated power are provided to demonstrate the performance of proposed converter.

The Conception & Fail-Mode Analysis of PTC Thermistor for Over-Current Protection (PST측면에서의 과전류 보호용PTC 소자의 개념 정립 및 Failure-Mode 분석)

  • 박준호
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2001.05a
    • /
    • pp.67-75
    • /
    • 2001
  • Circuitry to be connected to a Telecommunication Network consists of SELV CIRCUITS or TNV CIRCUITS. So International Standards, like as ITU-T Recommendation K.11, UL 1950, CSA C22.2 950 have been taken to reduce the risk that the Overvoltages from the power lines and from electrictraction lines, that may be received from the telecommunication network. Legal requirements may exist regarding permission to connect equipment having PTC components to a telecommunication network. Surge suppressors that bridge the insulation shall have a minimum d.c. sparkover voltage of 1.6 times the rated voltage or 1.6 times the upper voltage of the tared voltage range of the equipment. If left in place during electric strength testing of insulation, they shall not be damaged. In this work, The Conception & Fail-Mode Analysis of PTC components for Over-Current Protection is proposed. It guarantees the protection for PL Claim about this Subject.

  • PDF

Diode Stresses Reduction Of Asymmetrical Half-Bridge Converter Using Hybrid Control Scheme (하이브리드 제어기법을 이용한 Asymmetrical 하프 브리지 컨버터의 다이오드 스트레스 저감기법)

  • Joh, Chahng-Gyu;Lee, Dong-Yun;Kim, Kyong-Hwan;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.221-223
    • /
    • 2003
  • This paper presents a new hybrid control method of asymmetrical/symmetrical half-bridge converter (AHBC/SHBC) with low voltage stress of the diodes. The proposed new control scheme is executed by using feedback of the input voltage and then can decide operation of the converter is divided into two ranges, which are asymmetrical control and symmetrical control, So the proposed control scheme has many advantages such as a low rated voltage of the secondary diodes, and low conduction loss according to the low voltage drop. The proposed control scheme is verified by simulated results.

  • PDF

A Safety Improvement of Low Voltage Circuit-breakers through Analysis of Instantaneous Trip Characteristics of 30AF Circuit-Breakers (30AF 차단기 순시 Trip 동작 특성분석을 통한 저압차단기의 안전성 개선방안)

  • Kim, Ju-Chul;Lim, Jeong-Kyun;Lee, Sang-Joong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.78-83
    • /
    • 2010
  • The domestic 30AFs that are currently being produced show many problems due to different instantaneous trip characteristics in case of short-circuit. The troubles may cause explosion by excessive short-circuit capacities and arc emission, which results in a wide range of blackout. The function and safety of the low voltage circuit breakers installed before the end load are very important. This paper presents an idea on the safety improvement of the low voltage circuit-breakers through the analysis of instantaneous trip characteristics of domestic 30AF circuit-breakers.

The Comparative Analysis of 2-Phase Inverter Topologies for 2-Phase Induction Motor (2상 유도전동기 구동을 위한 2상 인버터 토폴로지의 비교 분석)

  • Kim, Dong-Ki;Yoon, Duck-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1013-1018
    • /
    • 2016
  • In this paper, three kinds of the inverter topologies for the variable speed drive of 2-phase induction motor are compared and analyzed. The 2-phase inverters are classified into 2-leg, 3-leg, and 4-leg types depending on the number of power switching devices. And they use the output voltage vectors of the different forms according to the inverter topologies. Based on the comparative analyzed results, the effective values of output voltage have been defined by the linear modulation range. Therefore, the motor design guideline is proposed in order to decide a rated voltage of 2-phase induction motor according to the inverter topologies. Also, the computer simulations are carried out to verify the output voltage and current characteristics of each inverter topology.

The Development of the Buck Type Electronic Dimming Ballast for 250W MHL

  • Jung, Dong-Youl;Park, Chong-Yeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.496-502
    • /
    • 2006
  • In this paper, we studied the development of the electronic ballast for 250W MH (Metal-Halide) lamps. We were able to improve the input power factor by using a PFC IC. To provide the lamp with the rated voltage required, we used the buck-type dc-dc converter. The stress of the switching devices in the inverter could be reduced by this method. To eliminate the acoustic resonance phenomena of MH lamps, the voltage of the lamp added the high frequency sine-wave to the low frequency square-wave by using the full bridge typed inverter. We have developed a simple igniter using the L and C elements. We could control the dimness of the lamp by varying the output voltage of the buck converter. The buck converter output voltage could be controlled by using a microprocessor.

Power Management of Open Winding PM Synchronous Generator for Unbalanced Voltage Conditions

  • EL-Bardawil, Ashraf;Moussa, Mona Fouad
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2192-2201
    • /
    • 2016
  • Wind energy is currently the fastest-growing electricity source worldwide. The cost efficiency of wind generators must be high because these generators have to compete with other energy sources. In this paper, a system that utilizes an open-winding permanent-magnet synchronous generator is studied for wind-energy generation. The proposed system controls generated power through an auxiliary voltage source inverter. The VA rating of the auxiliary inverter is only a fraction of the system-rated power. An adjusted control system, which consists of two main parts, is implemented to control the generator power and the grid-side converter. This paper introduces a study on the effect of unbalanced voltages for the wind-generation system. The proposed system is designed and simulated using MATLAB/Simulink software. Theoretical and experimental results verify the validity of the proposed system to achieve the power management requirements for balanced and unbalanced voltage conditions of the grid.