• Title/Summary/Keyword: Rated Power

Search Result 755, Processing Time 0.03 seconds

Study on the Optimum Rotor Blade Design of the 1 kW HAWT by BEMT (BEMT를 이용한 1 kW급 수평축 풍력발전용 로터 블레이드 형상 최적설계에 관한 연구)

  • Lee, Min-Woo;Kim, Jeong-Hwan;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.356-362
    • /
    • 2007
  • The optimum design and the performance analysis software called POSEIDON for the HAWT (Horizontal Axis Wind Turbine) was developed by use of BEMT. The Prandtl's tip loss theory was adopted to consider the blade tip loss. The aerodynamic characteristics of NACA 63-415 airfoils were predicted via X-FOIL and the post stall characteristics were estimated by the Viterna's equations. All the predicted aerodynamic characteristics are fairly well agreed with the Velux wind tunnel test results. The rated power of the testing rotor is 1 kW at design conditions. The power, estimated by use of predicted lift and drag coefficient via X-FOIL becomes a little higher than experimental one.

A Hybrid Active Power Filter for Electric-Railway Systems Using Multi-Level Inverters (멀티레벨 인버터를 이용한 전기철도용 하이브리드 능동 전력필터)

  • 김윤호;김수홍;이강희
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.339-344
    • /
    • 2004
  • This paper proposes transformerless power conversion system consisting of a single-phase diode rectifier and a shunt hybrid filter for the electric-railway system. The hybrid filter consists of a single tuned LC filter per a phase and a low-rated NPC type multi-level inverter. Compared with conventional active filters. transformers are not used. Also, LC filter works as not only a harmonic filter tuned at the 3rd harmonic frequency but also a switching-ripple filter. The rating of the active filter can be decreased by using a NPC type multi-level inverter. The simulation results confirm the validity of the system.

Analysis of On-Line Partial Discharge Trend in High Voltage Motors (고압전동기 운전중 부분방전 추이 분석)

  • Kim, Hee-Dong;Kong, Tae-Sik;Kim, Chung-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1472-1473
    • /
    • 2006
  • During normal machine operation, partial discharge(PD) measurements were peformed with turbine generator analyzer(TGA) in two high voltage motors(rated 6.6 kV). These high voltage motors were installed with 80 pF capacitive couplers at the terminal box. TGA summarizes each plot with two quantities such as the normalized quantity number(NQN) and the peak PD magnitude (Qm). The trend analyses of NQN and $Q_m$ value are available for monitoring of the insulation condition in stator windings of high voltage motors.

  • PDF

Power Regulation of Variable Speed Wind Turbines using Pitch Control based on Disturbance Observer

  • Joo, Young-Jun;Back, Ju-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.273-280
    • /
    • 2012
  • Most variable speed wind turbines have pitch control mechanisms and one of their objectives is to protect turbines when the wind speed is too high. By adjusting pitch angles of wind turbine, the inlet power and the torque developed by the turbine are regulated. In this paper, the difference between the real wind speed and its rated value is regarded as a disturbance, and a component called disturbance observer (DOB) is added to the pre-designed control loop. The additional DOB based controller estimates the disturbance and generates a compensating signal to suppress the effect of disturbance on the system. As a result, the stability and the performance of the closed loop system guaranteed by an outer-loop controller (designed for a nominal system without taking into account of disturbances) are approximately recovered in the steady state. Simulation results are presented to verify the performance of the proposed control scheme.

Induction Motor with Adjustable Windings for High Efficiency Drive in Light Load Operation

  • Zhang, Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.508-513
    • /
    • 2014
  • Heavy load start but light load operation is a common case in practical drive applications. When an induction motor is employed for such applications, its rated power is usually chosen according to the heavy load start. Then, during light load operation, its efficiency and power factor are low. To solve this problem, it is proposed to adjust the motor windings from the startup to the normal operation conditions. In this paper, arrangement of the adjustable windings is introduced, air gap field with different windings is investigated, and steady state operation performance under various loads is examined. It can be seen that by using proper winding arrangement both startup and operation performances are satisfactory.

Analyze of High Efficiency PCS for Fuel Cell (연료전지용 3-Stage PCS의 손실 해석)

  • Ba, Yasgalan;Lee, Yong-Jin;Han, Dong-Hwa;Kim, Young-Sik;Gwon, Wang-Song;Jeong, Beong-Hwang;Shin, Woo-Sok;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.100-102
    • /
    • 2008
  • As Utility interactive fuel cell systems are widely used, it is required for each power conditioning system(PCS) to have higher generating performance and more stable connecting characteristics. This study is focused to minimization of power losses and hence higher efficiency related to the new half bridge type 3-stage utility interactive PCS topology. The loss factor of half-bridge converter becomes only 1.2[%] under the rated load, and hence total efficiency is maintained to be higher as 91[%].

  • PDF

A Study of Grid-Connected PV System with Power Control Structure

  • Vu, Trung-Kien;Bae, Youngsang;Oh, Seongjin
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.329-330
    • /
    • 2012
  • The rising popularity of renewable energy sources resulted in development of the units of higher rated powers, where the large-scale plants and grid-connected type solar power systems are increased. Therefore, the importance of grid stabilization, which depends on each country or system-type, has been strengthened by different grid-codes or certifications. In this paper, the control scheme of three-phase photovoltaic system is enhanced, where both injected active and reactive powers are simultaneously controlled with the consideration of the certification of the Germany Association of Energy and Water Industries (BDEW). Experimental results are shown to verify the theoretical analysis.

  • PDF

Design of a 2kW Bidirectional DC-DC Converter with 99% Efficiency for Energy Storage System (에너지 저장장치를 위한 99% 고효율 2kW급 양방향 dc-dc 컨버터 설계)

  • Lee, Taeyeong;Cho, Younghoon;Cho, Byung-Geuk
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.85-86
    • /
    • 2015
  • In this paper, the bidirectional DC-DC converter is composed of the 900V Silicon-Carbide(SiC) devices to get high efficiency. The 900V SiC device is better than a similar current rated traditional SiC device. it has a lower drain-source resistance and output capacitance. therefore it can reduce the switching and the conduction losses of the DC-DC converter. The experimental results verify the improvement of efficiency and usefulness of 900V SiC device.

  • PDF

A Study for the Effect on the Uncertainty of Power Performance Testing of Windturbine by a Site Calibration (Site calibration이 풍력발전시스템 성능시험 불확도에 미치는 영향 연구)

  • Kim, Keon-Hoon;Hyun, Seung-Gun
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.107-112
    • /
    • 2011
  • A comparison study between two performance testing results, one is on the site calibration not needed and the other is needed, was proceeded for the understanding on the effect of site calibration on the complex terrain. As a result, it is revealed that all of uncertainty components is effected by the topographical features dramatically. And the maximum difference of uncertainty reached at around 8% of rated capacity of wind turbine. So, the site calibration is an effective method to remove the variable wind effect by the ground complexity and must be proceeded before the power performance testing of a wind turbine.

Thermal Network Analysis of Interior Permanent Magnet Machine (매입형 영구자석 전동기의 열 등가 회로 해석)

  • Lim, Jae-Won;Seo, Jang-Ho;Lee, Sang-Yub;Jung, Hyun-Kyo
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.527-532
    • /
    • 2009
  • Recently, Interior Permanent Magnet Machine(IPM) is widely used for traction motor in the high speed train. Due to the high efficiency and high power density of the IPM, it has lots of heat sources such as iron loss and copper loss. These heat sources can cause the demagnetization of permanent magnet, losses in output power and even irreversible defect of the IPM. To prevent the power loss caused by heat sources, the accurate thermal analysis has to be carried out. For the thermal analysis of the IPM, the thermal network is designed for this traction motor. The thermal analysis has executed at rated speed operation. The result of thermal network analysis can be used for the IPM design process.

  • PDF