• Title/Summary/Keyword: Rate-adaptive

Search Result 1,713, Processing Time 0.024 seconds

Performance of Adaptive Equalizer in the Shallow Underwater Acoustic Communication Channel (천해 수중 음향 통신 채널에서 적응 등화기의 성능)

  • Choi, Hyun-Kyu;Lee, Sangmin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • The inter-symbol interference(ISI) is one of the main obstacles to reliable high-rate data communication in the shallow underwater acoustic channel. This paper studies on the simulation of adaptive equalizer used as a means of mitigating the ISI in the shallow underwater acoustic communication system. The underwater channel is modeled as a superposition of multiple paths, whose lengths and relative delays are calculated from the channel geometry. Based on this channel model, computer simulations are carried out to investigate the performance of adaptive equalizer in the shallow underwater acoustic channel.

The Effect of Segment Size on Quality Selection in DQN-based Video Streaming Services (DQN 기반 비디오 스트리밍 서비스에서 세그먼트 크기가 품질 선택에 미치는 영향)

  • Kim, ISeul;Lim, Kyungshik
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.10
    • /
    • pp.1182-1194
    • /
    • 2018
  • The Dynamic Adaptive Streaming over HTTP(DASH) is envisioned to evolve to meet an increasing demand on providing seamless video streaming services in the near future. The DASH performance heavily depends on the client's adaptive quality selection algorithm that is not included in the standard. The existing conventional algorithms are basically based on a procedural algorithm that is not easy to capture and reflect all variations of dynamic network and traffic conditions in a variety of network environments. To solve this problem, this paper proposes a novel quality selection mechanism based on the Deep Q-Network(DQN) model, the DQN-based DASH Adaptive Bitrate(ABR) mechanism. The proposed mechanism adopts a new reward calculation method based on five major performance metrics to reflect the current conditions of networks and devices in real time. In addition, the size of the consecutive video segment to be downloaded is also considered as a major learning metric to reflect a variety of video encodings. Experimental results show that the proposed mechanism quickly selects a suitable video quality even in high error rate environments, significantly reducing frequency of quality changes compared to the existing algorithm and simultaneously improving average video quality during video playback.

ECG Identification Method Using Adaptive Weight Based LMSE Optimization (적응적 가중치를 사용한 LMSE 최적화 기반의 심전도 개인 인식 방법)

  • Kim, Seok-Ho;Kang, Hyun-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2015
  • This paper presents a Electrocardiogram(ECG) identification method using adaptive weight based on Least Mean Square Error(LMSE) optimization. With a preprocessing for noise suppression, we extracts the average ECG signal and its standard deviation at every time instant. Then the extracted information is stored in database. ECG identification is achieved by matching an input ECG signal with the information in database. In computing the matching scores, the standard deviation is used. The scores are computed by applying adaptive weights to the values of the input signal over all time instants. The adaptive weight consists of two terms. The first term is the inverse of the standard deviation of an input signal. The second term is the proportional one to the standard deviation between user SAECGs stored in the DB. Experimental results show up to 100% recognition rate for 32 registered people.

Adaptive Fault Accommodation Control for Flexible-Joint Robots (유연 관절 로봇의 적응 고장 수용 제어)

  • Yoo, Sung Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.46-50
    • /
    • 2013
  • This paper proposes an adaptive fault accommodation control approach for flexible-joint (FJ) robots with multiple actuator faults. It is assumed that the value and occurrence time of multiple actuator faults are unknown. An adaptive fault accommodation control scheme with prescribed performance bounds, which characterize the convergence rate and maximum overshoot of tracking errors, is designed to accommodate the actuator faults. From the Lyapunov stability theorem, it is proved that all signals of the closed-loop system are semi-globally uniformly ultimately bounded and tracking errors are preserved within prescribed performance bounds regardless of actuator faults.

An Adaptive FEC Code Control Algorithm for Mobile Wireless Sensor Networks

  • Ahn Jong-Suk;Hong Seung-Wook;Heidemann John
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.489-498
    • /
    • 2005
  • For better performance over a noisy channel, mobile wireless networks transmit packets with forward error correction (FEC) code to recover corrupt bits without retransmission. The static determination of the FEC code size, however, degrades their performance since the evaluation of the underlying channel state is hardly accurate and even widely varied. Our measurements over a wireless sensor network, for example, show that the average bit error rate (BER) per second or per minute continuously changes from 0 up to $10^{-3}$. Under this environment, wireless networks waste their bandwidth since they can't deterministically select the appropriate size of FEC code matching to the fluctuating channel BER. This paper proposes an adaptive FEC technique called adaptive FEC code control (AFECCC), which dynamically tunes the amount of FEC code per packet based on the arrival of acknowl­edgement packets without any specific information such as signal to noise ratio (SNR) or BER from receivers. Our simulation experiments indicate that AFECCC performs better than any static FEC algorithm and some conventional dynamic hybrid FEC/ARQ algorithms when wireless channels are modeled with two-state Markov chain, chaotic map, and traces collected from real sensor networks. Finally, AFECCC implemented in sensor motes achieves better performance than any static FEC algorithm.

Precoder Distribution and Adaptive Codebook in Wideband Precoding

  • Long, Hang;Kim, Kyeong Jin;Xiang, Wei;Wang, Jing;Liu, Yuanan;Wang, Wenbo
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.655-665
    • /
    • 2012
  • Based on wideband precoding (WBP) in the multiple-input multiple-output orthogonal frequency division multiplexing system, an adaptive nonuniform codebook is presented in this paper. The relationship between the precoder distribution and spatial correlation is analyzed at first. A closed-form expression based on overlapped isosceles triangles is proposed as an approximation of the precoder distribution. Then, the adaptive codebook design is derived with the approximate distribution to minimize quantization errors. The capacity and bit error rate performance demonstrate that the adaptive codebook with WBP outperforms the conventional fixed uniform codebook.

An Adaptive Genetic Algorithm with a Fuzzy Logic Controller for Solving Sequencing Problems with Precedence Constraints (선행제약순서결정문제 해결을 위한 퍼지로직제어를 가진 적응형 유전알고리즘)

  • Yun, Young-Su
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.2
    • /
    • pp.1-22
    • /
    • 2011
  • In this paper, we propose an adaptive genetic algorithm (aGA) approach for effectively solving the sequencing problem with precedence constraints (SPPC). For effective representation of the SPPC in the aGA approach, a new representation procedure, called the topological sort-based representation procedure, is used. The proposed aGA approach has an adaptive scheme using a fuzzy logic controller and adaptively regulates the rate of the crossover operator during the genetic search process. Experimental results using various types of the SPPC show that the proposed aGA approach outperforms conventional competing approaches. Finally the proposed aGA approach can be a good alternative for locating optimal solutions or sequences for various types of the SPPC.

Autonomous Unmanned Flying Robot Control for Reconfigurable Airborne Wireless Sensor Networks Using Adaptive Gradient Climbing Algorithm (에어노드 기반 무선센서네트워크 구축을 위한 적응형 오르막경사법 기반의 자율무인비행로봇제어)

  • Lee, Deok-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.97-107
    • /
    • 2011
  • This paper describes efficient flight control algorithms for building a reconfigurable ad-hoc wireless sensor networks between nodes on the ground and airborne nodes mounted on autonomous vehicles to increase the operational range of an aerial robot or the communication connectivity. Two autonomous flight control algorithms based on adaptive gradient climbing approach are developed to steer the aerial vehicles to reach optimal locations for the maximum communication throughputs in the airborne sensor networks. The first autonomous vehicle control algorithm is presented for seeking the source of a scalar signal by directly using the extremum-seeking based forward surge control approach with no position information of the aerial vehicle. The second flight control algorithm is developed with the angular rate command by integrating an adaptive gradient climbing technique which uses an on-line gradient estimator to identify the derivative of a performance cost function. They incorporate the network performance into the feedback path to mitigate interference and noise. A communication propagation model is used to predict the link quality of the communication connectivity between distributed nodes. Simulation study is conducted to evaluate the effectiveness of the proposed reconfigurable airborne wireless networking control algorithms.

Multiscale Adaptive Local Directional Texture Pattern for Facial Expression Recognition

  • Zhang, Zhengyan;Yan, Jingjie;Lu, Guanming;Li, Haibo;Sun, Ning;Ge, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4549-4566
    • /
    • 2017
  • This work presents a novel facial descriptor, which is named as multiscale adaptive local directional texture pattern (MALDTP) and employed for expression recognition. We apply an adaptive threshold value to encode facial image in different scales, and concatenate a series of histograms based on the MALDTP to generate facial descriptor in term of Gabor filters. In addition, some dedicated experiments were conducted to evaluate the performance of the MALDTP method in a person-independent way. The experimental results demonstrate that our proposed method achieves higher recognition rate than local directional texture pattern (LDTP). Moreover, the MALDTP method has lower computational complexity, fewer storage space and higher classification accuracy than local Gabor binary pattern histogram sequence (LGBPHS) method. In a nutshell, the proposed MALDTP method can not only avoid choosing the threshold by experience but also contain much more structural and contrast information of facial image than LDTP.

Adaptive Threshold Detection Using Expectation-Maximization Algorithm for Multi-Level Holographic Data Storage (멀티레벨 홀로그래픽 저장장치를 위한 적응 EM 알고리즘)

  • Kim, Jinyoung;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.809-814
    • /
    • 2012
  • We propose an adaptive threshold detector algorithm for multi-level holographic data storage based on the expectation-maximization (EM) method. In this paper, the signal intensities that are passed through the four-level holographic channel are modeled as a four Gaussian mixture with unknown DC offsets and the threshold levels are estimated based on the maximum likelihood criterion. We compare the bit error rate (BER) performance of the proposed algorithm with the non-adaptive threshold detection algorithm for various levels of DC offset and misalignments. Our proposed algorithm shows consistently acceptable performance when the DC offset variance is fixed or the misalignments are lower than 20%. When the DC offset varies with each page, the BER of the proposed method is acceptable when the misalignments are lower than 10% and DC offset variance is 0.001.