• Title/Summary/Keyword: Rate-adaptive

Search Result 1,710, Processing Time 0.03 seconds

Early treatment volume reduction rate as a prognostic factor in patients treated with chemoradiotherapy for limited stage small cell lung cancer

  • Lee, Joohwan;Lee, Jeongshim;Choi, Jinhyun;Kim, Jun Won;Cho, Jaeho;Lee, Chang Geol
    • Radiation Oncology Journal
    • /
    • v.33 no.2
    • /
    • pp.117-125
    • /
    • 2015
  • Purpose: To investigate the relationship between early treatment response to definitive chemoradiotherapy (CRT) and survival outcome in patients with limited stage small cell lung cancer (LS-SCLC). Materials and Methods: We retrospectively reviewed 47 patients with LS-SCLC who received definitive CRT between January 2009 and December 2012. Patients were treated with systemic chemotherapy regimen of etoposide/carboplatin (n = 15) or etoposide/cisplatin (n = 32) and concurrent thoracic radiotherapy at a median dose of 54 Gy (range, 46 to 64 Gy). Early treatment volume reduction rate (ETVRR) was defined as the percentage change in gross tumor volume between diagnostic computed tomography (CT) and simulation CT for adaptive RT planning and was used as a parameter for early treatment response. The median dose at adaptive RT planning was 36 Gy (range, 30 to 43 Gy), and adaptive CT was performed in 30 patients (63.8%). Results: With a median follow-up of 27.7 months (range, 5.9 to 75.8 months), the 2-year locoregional progression-free survival (LRPFS) and overall survival (OS) rates were 74.2% and 56.5%, respectively. The mean diagnostic and adaptive gross tumor volumes were 117.9 mL (range, 5.9 to 447 mL) and 36.8 mL (range, 0.3 to 230.6 mL), respectively. The median ETVRR was 71.4% (range, 30 to 97.6%) and the ETVRR >45% group showed significantly better OS (p < 0.0001) and LRPFS (p = 0.009) than the other group. Conclusion: ETVRR as a parameter for early treatment response may be a useful prognostic factor to predict treatment outcome in LS-SCLC patients treated with CRT.

Strategy for An Adaptive UPC Algorithm with Buffer Threshold in ATM Network (버퍼 지연을 고려한 ATM 망의 적응적 UPC 알고리즘의 기법)

  • An, Ok-Jeong;Chae, Gi-Jun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.1
    • /
    • pp.224-236
    • /
    • 1997
  • In order to control the flow of traffic in ATM networks and optimize the usage of network resources, an appropriate control mechanism is necessary to cope with congestion or prevent degradation of network performance caused by congestion. While the conventional UPC algorithm provides only unstable preventive function unrelated with the state of networks and is unable to recover congestion, the proposed adaptive UPC algorithm supervises the situation of ATM networks using the information from OAM cell. Then the monitor of the proposed adaptive UPC algorithm controls leaky rate and buffer threshold value according to QOS. Therefore, the proposed algorithm can cope with congestion as well as prevent and react sensitively to buffer delay. In proportion to the diversity of traffic and the increase of transmission rate in networks, the adaptive UPC-BT algorithm proposed in this paper can be effectively used in ATM networks with wide applications. This paper shows that the proposed algorithm efficiently uses in ATM networks with application. This paper shows that the proposed algorithm efficiently use network resources and provides QOS to users for various kinds of traffics by comparing with conventional UPC algorithms.

  • PDF

The Improvement of High Convergence Speed using LMS Algorithm of Data-Recycling Adaptive Transversal Filter in Direct Sequence Spread Spectrum (직접순차 확산 스펙트럼 시스템에서 데이터 재순환 적응 횡단선 필터의 LMS 알고리즘을 이용한 고속 수렴 속도 개선)

  • Kim, Gwang-Jun;Yoon, Chan-Ho;Kim, Chun-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.22-33
    • /
    • 2005
  • In this paper, an efficient signal interference control technique to improve the high convergence speed of LMS algorithms is introduced in the adaptive transversal filter of DS/SS. The convergence characteristics of the proposed algorithm, whose coefficients are multiply adapted in a symbol time period by recycling the received data, is analyzed to prove theoretically the improvement of high convergence speed. According as the step-size parameter ${\mu}$ is increased, the rate of convergence of the algorithm is controlled. Also, an increase in the stop-size parameter ${\mu}$ has the effect of reducing the variation in the experimentally computed learning curve. Increasing the eigenvalue spread has the effect of controlling which is downed the rate of convergence of the adaptive equalizer. Increasing the steady-state value of the average squared error, proposed algorithm also demonstrate the superiority of signal interference control to the filter algorithm increasing convergence speed by (B+1) times due to the data-recycling LMS technique.

16kbps Windeband Sideband Speech Codec (16kbps 광대역 음성 압축기 개발)

  • 박호종;송재종
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.5-10
    • /
    • 2002
  • This paper proposes new 16 kbps wideband speech codec with bandwidth of 7 kHz. The proposed codec decomposes the input speech signal into low-band and high-band signals using QMF (Quadrature Mirror Filter), then AMR (Adaptive Multi Rate) speech codec processes the low-band signal and new transform-domain codec based on G.722.1 wideband cosec compresses the high-band signal. The proposed codec allocates different number of bits to each band in an adaptive way according to the property of input signal, which provides better performance than the codec with the fixed bit allocation scheme. In addition, the proposed cosec processes high-band signal using wavelet transform for better performance. The performance of proposed codec is measured in a subjective method. and the simulations with various speech data show that the proposed coders has better performance than G.722 48 kbps SB-ADPCM.

Adaptive Group Loading and Weighted Loading for MIMO OFDM Systems

  • Shrestha, Robin;Kim, Jae-Moung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.1959-1975
    • /
    • 2011
  • Adaptive Bit Loading (ABL) in Multiple-Input Multiple-Output Orthogonal Frequency-Division Multiplexing (MIMO-OFDM) is often used to achieve the desired Bit Error Rate (BER) performance in wireless systems. In this paper, we discuss some of the bit loading algorithms, compare them in terms of the BER performance, and present an effective and concise Adaptive Grouped Loading (AGL) algorithm. Furthermore, we propose a "weight factor" for loading algorithm to converge rapidly to the final solution for various data rate with variable Signal to Noise Ratio (SNR) gaps. In particular, we consider the bit loading in near optimal Singular Value Decomposition (SVD) based MIMO-OFDM system. While using SVD based system, the system requires perfect Channel State Information (CSI) of channel transfer function at the transmitter. This scenario of SVD based system is taken as an ideal case for the comparison of loading algorithms and to show the actual enhancement achievable by our AGL algorithm. Irrespective of the CSI requirement imposed by the mode of the system itself, ABL demands high level of feedback. Grouped Loading (GL) would reduce the feedback requirement depending upon the group size. However, this also leads to considerable degradation in BER performance. In our AGL algorithm, groups are formed with a number of consecutive sub-channels belonging to the same transmit antenna, with individual gains satisfying predefined criteria. Simulation results show that the proposed "weight factor" leads a loading algorithm to rapid convergence for various data rates with variable SNR gap values and AGL requires much lesser CSI compared to GL for the same BER performance.

The Realization of Panoramic Infrared Image Enhancement and Warning System for Small Target Detection (소형 표적 탐지를 위한 파노라믹 적외선 영상 향상 장치 및 경보시스템 구현)

  • Kim Ki Hong;Kim Ju Young;Jung Tae Yeon;Jeon Byung Gyoon;Lee Eui Hyuk;Kim Duk Gyoo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.1
    • /
    • pp.46-55
    • /
    • 2005
  • In this paper, we realize the panoramic infrared warning system to detect the small threaten object and propose the infrared image enhancement method to improve the warning ability of this system. This system composes of the sense head unit, the signal processing unit, and so on. In the proposed system, the sense head unit acquires the panoramic IR image with 360 degree field of view(FOV) by rotating the thermal sensor. The signal processing unit divides panoramic image into four sub-images with 90 degree FOV and computes the adaptive plateau value by using statistical characteristics of each subimage. Then the histogram equalization is performed for each subimage by using the adaptive plateau value. We realize the signal Processing unit by using the DSP and FPGA to perform the proposed method in real time. Experimental results show that the proposed method has better discrimination and lower false alarm rate than the conventional methods in this warning system.

  • PDF

High Bit Rate Image Coder Using DPCM based on Sample-Adaptive Product Quantizer (표본 적응 프러덕트 양자기에 기초한 DPCM을 이용한 고 전송률 영상 압축)

  • 김동식;이상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2382-2390
    • /
    • 1999
  • In this paper, we employed a new quantization scheme called sample-adaptive product quantizer (SAPQ) to quantize image data based on the differential pulse code modulation (DPCM) coder, which has fixed length outputs and high bit rates. In order to improve the performance of traditional DPCM coders, the scalar quantizer should be replaced by the vector quantizer (VQ). As the bit rate increases, it will be nearly impossible to implement a conventional VQ or modified VQ, such as the tree-structured VQ, even if the modified VQ can significantly reduce the encoding complexity. SAPQ has a form of the feed-forward adaptive scalar quantizer having a short adaptation period. However, since SAPQ is a structurally constrained VQ, SAPQ can achieve VQ-level performance with a low encoding complexity. Since SAPQ has a scalar quantizer structure, by using the traditional scalar value predictors, we can easily apply SAPQ to DPCM coders. For synthetic data and real images, by employing SAPQ as the quantizer part of DPCM coders, we obtained a 2~3 dB improvement over the DPCM coders, which are based on the Lloyd-Max scalar quantizers, for data rates above 4 b/point.

  • PDF

Adaptive Rate-Distortion Optimized Multiple Loop Filtering Algorithm (적응적 율-왜곡 최적 다중 루프 필터 기법)

  • Hong, Soon-Gi;Choe, Yoon-Sik;Kim, Yong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.15 no.5
    • /
    • pp.617-630
    • /
    • 2010
  • At 37th VCEG meeting in Jan. 2009, Toshiba proposed Quadtree-based Adaptive Loop Filter (QALF). The basic concept of QALF is to apply Wiener filter to decoded image after the conventional deblocking filter and to represent the filter on/off flag data for each basic filtering unit in a more efficient way of quadtree structure. QALF could enhance the compression performance of around more than 9%, but the structure of one filter for a decoded frame leaves room for further improvement in the sense that optimal filter for one region of a frame could quite different from the optimal filter for other parts of a picture. This paper proposes multiple adaptive loop filters for better utilization of local characteristics of decoded frame to optimize the region-based Wiener filters. Additional filters, proposed in this paper, cover separate spatial area of each decoded frame according to the performance of previously designed filter(s) to provide the flexibility of rate-distortion based selection of the number of filters.

A Video Bitrate Adaptation Algorithm for DASH-Based Multimedia Streaming Services to Enhance User QoE (DASH 기반 멀티미디어 스트리밍 서비스에서 사용자 체감품질 향상을 위한 비트율 적응 기법)

  • Suh, Dongeun;Jang, Insun;Pack, Sangheon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.6
    • /
    • pp.341-349
    • /
    • 2014
  • Dynamic adaptive streaming over HTTP (DASH) is the most recent and promising technology to support high quality streaming services. In dynamic adaptive streaming over HTTP (DASH), a client consecutively estimates the available network bandwidth and decides the transmission rate for the forthcoming video chunks to be downloaded. In this paper, we propose a novel rate adaptation algorithm called quality of experience QoE-enhanced adaptation algorithm over DASH (QAAD), which preserves the minimum buffer length to avoid interruption and minimizes the video quality changes during the playback. We implemented a DASH test bed and conducted extensive experiments. Experimental results demonstrate that under fluctuating network conditions, QAAD provides seamless streaming with stabilized video quality while the previous buffer-aware algorithm (i.e., QDASH[9]) frequently changes the video quality and undergoes the interruption.

Nonuniform Delayless Subband Filter Structure with Tree-Structured Filter Bank (트리구조의 비균일한 대역폭을 갖는 Delayless 서브밴드 필터 구조)

  • 최창권;조병모
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.13-20
    • /
    • 2001
  • Adaptive digital filters with long impulse response such as acoustic echo canceller and active noise controller suffer from slow convergence and computational burden. Subband techniques and multirate signal processing have been recently developed to improve the problem of computational complexity and slow convergence in conventional adaptive filter. Any FIR transfer function can be realized as a serial connection of interpolators followed by subfilters with a sparse impulse response. In this case, each interpolator which is related to the column vector of Hadamard matrix has band-pass magnitude response characteristics shifted uniformly. Subband technique using Hadamard transform and decimation of subband signal to reduce sampling rate are adapted to system modeling and acoustic noise cancellation In this paper, delayless subband structure with nonuniform bandwidth has been proposed to improve the performance of the convergence speed without aliasing due to decimation, where input signal is split into subband one using tree-structured filter bank, and the subband signal is decimated by a decimator to reduce the sampling rate in each channel, then subfilter with sparse impulse response is transformed to full band adaptive filter coefficient using Hadamard transform. It is shown by computer simulations that the proposed method can be adapted to general adaptive filtering.

  • PDF