• Title/Summary/Keyword: Rate of volume increase

Search Result 896, Processing Time 0.024 seconds

Study on the Asymmetric Regional Deposition of Airborne Pollutant Particles in the Human Respiratory Tract (대기오염 입자의 인체 호흡기내 비대칭 국부침전 특성에 관한 연구)

  • 구재학;김종숭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.551-560
    • /
    • 2003
  • Particle deposition in human lungs was investigated theoretically by using asymmetric five-lobe lung model. The volumes of each of the five lobes were different, thereby forming an asymmetric lung structure. The tidal volume and flow rate of each lobe were scaled according to lobar volume. The total and regional deposition with various breathing patterns were calculated by means of tracking volume segments and accounting for particle loss during inhalation and exhalation. The deposition fractions were obtained for each airway generation and lung lobe, and dominant deposition mechanisms were investigated for different size particles. Results show that the tidal volume and flow rate have a characteristic influence on particle deposition. The total deposition fraction increases with an increase in tidal volume for all particle sizes. However, flow rate has dichotomous effects: a higher flow rate results in a sharp increase in deposition for large size particles, but decreases deposition for small size particles. Deposition distribution within the lung shifts proximally with higher flow rate whereas deposition peak shifts to the deeper lung region with larger tidal volume. Deposition fraction in each lobe was proportional to its volume. Among the three main deposition mechanisms, diffusion was dominant for particles < 0.5 ${\mu}{\textrm}{m}$ whereas sedimentation and impaction were most influential for larger size particles. Impaction was particularly dominant for particles> 8 ${\mu}{\textrm}{m}$. The results may prove to be useful for estimating deposition dose of inhaled pollutant particles at various breathing conditions.

The Characteristics of the Flame Propagation Velocity and Volume Integral of Reaction Rate with the Variation of Fuel Injection Velocity for a Liftoff Flame (부상화염에서 연료유량에 따른 화염전파속도와 체적연소반응속도의 변화 특성에 관한 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon;Park, Jeung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.466-475
    • /
    • 2009
  • A numerical analysis of reactive flow in a liftoff flame is accomplished to elucidate the characteristics of flame propagation velocity and volume integral of reaction rate with the variation of fuel injection velocity at the fuel rich region, fuel lean region and diffusion flame region. The increase of fuel injection velocity enhances flame propagation velocity, but its effect on the flame propagation velocity is not much greater under 4%. The increase of fuel injection velocity affects directly and linearly on the flame surface area in the fuel rich region and so enhances volume integral of reaction rate to accommodate the increment of fuel.

Cardiac Response to Head-Out Water Immersion in Man

  • Choi, Jang-Kyu;Park, Won-Kun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.3
    • /
    • pp.253-261
    • /
    • 2000
  • Head-out water immersion induces marked increase in the cardiac stroke volume. The present study was undertaken to characterize the stroke volume change by analyzing the aortic blood flow and left ventricular systolic time intervals. Ten men rested on a siting position in the air and in the water at $34.5^{circ}C$ for 30 min each. Their stroke volume, heart rate, ventricular systolic time intervals, and aortic blood flow indices were assessed by impedance cardiography. During immersion, the stroke volume increased 56%, with a slight (4%) decrease in heart rate, thus cardiac output increased ${\sim}50%.$ The slight increase in R-R interval was due to an equivalent increase in the systolic and diastolic time intervals. The ventricular ejection time was 20% increased, and this was mainly due to a decrease in pre-ejection period (28%). The mean arterial pressure increased 5 mmHg, indicating that the cardiac afterload was slightly elevated by immersion. The left ventricular end-diastolic volume index increased 24%, indicating that the cardiac preload was markedly elevated during immersion. The mean velocity and the indices of peak velocity and peak acceleration of aortic blood flow were all increased by ${\sim}30%,$ indicating that the left ventricular contractile force was enhanced by immersion. These results suggest that the increase in stroke volume during immersion is characterized by an increase in ventricular ejection time and aortic blood flow velocity, which may be primarily attributed to the increased cardiac preload and the muscle length-dependent increase in myocardial contractile force.

  • PDF

A Study on Estimating Container Throughput in Korean Ports using Time Series Data

  • Kim, A-Rom;Lu, Jing
    • Journal of Navigation and Port Research
    • /
    • v.40 no.2
    • /
    • pp.57-65
    • /
    • 2016
  • The port throughput situation has changed since the 2008 financial crisis in the US. Therefore, we studied the situation, accurately estimating port traffic of Korean port after the 2008 financial crisis. We ensured the proper port facilities in response to changes in port traffic. In the results of regression analysis, Korean GDP and the real effective exchange rate of Korean Won were found to increase the container throughput in Korean and Busan port, as well as trade volume with China. Also, the real effective exchange rate of Korean Won was found to increase the port transshipment cargo volume. Based on the ARIMA models, we forecasted port throughput and port transshipment cargo volume for the next six years (72 months), from 2015 to 2020. As a result, port throughput of Korean and Busan ports was forecasted by increasing annual the average from about 3.5% to 3.9%, and transshipment cargo volume was forecasted by increasing the annual average about 4.5%.

Kinetic Study of Hydrations and Volume Change of Soybeans during Soaking (침지중 콩의 흡수 및 부피변화의 속도론적 연구)

  • Kim, Dong-Hee;Yum, Cho-Ae;Kim, Woo-Jung
    • Applied Biological Chemistry
    • /
    • v.33 no.1
    • /
    • pp.18-23
    • /
    • 1990
  • Seven varieties of soybeans(Paldal, Danyeob, Jangbaek, Baegun, Jangyeob and 2 cultivars of Local 1 and Local 2) were investigated to compare the water uptake properties and volume changes during soaking in water. The hydration properties showed that the equilibrated weight increase ratio decreased as the soaking temperature raised to higher than $40^{\circ}C$, while the initial water uptake rate increased upto $80^{\circ}C$. The increase in hydration showed a linear relationship with the square root of the soaking time at $4^{\circ}{\sim}60^{\circ}C$. Local 1 was the highest in water uptake rate constant while Local 2 was the lowest. The activation energy calculated was in the range of $3,246{\sim}4,694\;cal/mole$. The Jangbaek and Local 1 were the highest and the Paldal was the lowest in the rate of volume increase. The activation energy for volume increase was in the range of $3,310{\sim}4,190\;cal/mole$. The z-values calculated from volume change was a little higher than those obtained from weight change.

  • PDF

Analysis of the dynamic confining effect of CRAC short column under monotonic loadings

  • Wang, Changqing;Xiao, Jianzhuang
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.351-363
    • /
    • 2020
  • Based on the dynamic tests of recycled aggregate concrete (RAC) short columns confined by the hoop reinforcement, the dynamic failure mechanism and the mechanical parameters related to the constitutive relation of confined recycled aggregate concrete (CRAC) were investigated thoroughly. The fracturing sections were relatively flat and smooth at higher strain rates rather than those at a quasi-static strain rate. With the increasing stirrup volume ratio, the crack mode is transited from splitting crack to slipping crack constrained with large transverse confinement. The compressive peak stress, peak strain, and ultimate strain increase with the increase of stirrup volume ratio, as well as the increasing strain rate. The dynamic confining increase factors of the compressive peak stress, peak strain, and ultimate strain increase by about 33%, 39%, and 103% when the volume ratio of hoop reinforcement is increased from 0 to 2%, but decrease by about 3.7%, 4.2%, and 9.1% when the stirrup spacing is increased from 20mm to 60mm, respectively. This sentence is rephrased as follows: When the stirrup volume ratios are up to 0.675%, and 2%, the contributions of the hoop confinement effect to the dynamic confining increase factors of the compressive peak strain and the compressive peak stress are greater than those of the strain rate effect, respectively. The dynamic confining increase factor (DCIF) models of the compressive peak stress, peak strain, and ultimate strain of CRAC are proposed in the paper. Through the confinement of the hoop reinforcement, the ductility of RAC, which is generally slightly lower than that of NAC, is significantly improved.

A Numerical Study on the Effect of Volume Change in a Closed Compartment on Maximum Heat Release Rate (밀폐된 구획실의 체적변화가 최대 열발생률에 미치는 영향에 관한 수치해석 연구)

  • Yun, Hong-Seok;Nam, Dong-Gun;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.19-27
    • /
    • 2017
  • The effects of changes in area and location of fire source, fire growth rate, and volume of compartment on the major fire characteristics, including heat release rate, in closed compartment fires were examined. To this end, a fire simulation using Fire Dynamics Simulator (FDS) was performed for ISO 9705 room with a closed opening. As main result, it was found that the changes in the area and location of fire source did not significantly affect the thermal and chemical characteristics inside the compartment, such as maximum heat release rate, total heat release, maximum temperature at upper layeras well as species concentrations. However, increasinthe fire growth rate and volume of compartment resulted in increase of the maximum heat release rate and total heat release, decrease in the limiting oxygen concentration and increase in the maximum CO concentration. Finally, a methodology for the application of fire growth curves to closed compartment fires was proposed by deriving the correlation of the maximum heat release rate expressed as a function of the fire growth rate and the volume ratio of compartment based on the ISO 9705 room.

The Characteristics of the Flame Propagation Velocity and Volume Integral of Reaction Rate with the Variation of Nozzle Diameter and Fuel Injection Flow Rate for a Liftoff Flame (부상화염에서 노즐직경과 연료유량에 따른 화염전파속도와 체적연소반응속도의 변화 특성에 관한 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.250-258
    • /
    • 2010
  • A numerical analysis of reactive flow in a liftoff flame is accomplished to elucidate the characteristics of flame propagation velocity and volume integral of reaction rate with the variation of nozzle diameter and fuel injection flow rate in a liftoff flame consisted with fuel rich region, fuel lean region and diffusion flame region. The increase of fuel injection velocity enhances flame propagation velocity for the selected three nozzle diameter(d=0.25, 0.30, 0.35mm), but its effect on the flame propagation velocity is not much greater than 4.3%. The increase of fuel flow rate is directly and linearly related with the volume reaction rate and so the volume reaction rate, not the flame propagation velocity, might be considered to accommodate the variation of fuel flow rate in a liftoff flame.

Comparison on Dimension and Hydration Rate of Korean Kidney Beans (강낭콩의 품종에 따른 형태적 특성 및 침지중 수화속도의 비교)

  • 박선희;조은자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.2
    • /
    • pp.286-292
    • /
    • 1995
  • Proximate composition, dimension, water uptake and volume increase rates of three cultivars of Korean kidney beans, Pink(PKB), Red(RKB) and White(WKB) were compared. Significant differences in the proximate composition and calorie were not observed among samples. Hull removed samples showed the lowest ash content and the highest calorie. The rates of water uptake increased as the soaking temperature increased from 10~4$0^{\circ}C$. The moisture gain of the kidney beans during soaking showed a similar pattern to volume increase. Water uptake and volume increase rates were in the decreasing order of PKB, RKB and WKB. Moisture and volume gains held a linear relation with the square root of soaking time regardless soaking temperatures. The activation energies of water uptake and volume increase were 3033~3087 and 3077~ 3161 kcal/mole, respectively. The log time to reach a fixed moisture content showed a linear relation with soaking temperature regardless soaking temperatures. The z-values calculated from weight and volume changes decreased in proportions to the increase of hydration. The z-values of weight and volume to reach 50% hydration were 50.5~56.6$^{\circ}C$ and 48.4~61.2$^{\circ}C$, respectively.

  • PDF

플라즈마 디스플레이 패널(Plasma Display Panel) 텔레비전에서의 냉각 소음 저감

  • 김규영;최민구;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.719-724
    • /
    • 2003
  • The present experimental study deals with noise reduction and improvements in cooling performance in a plasma display panel(PDP) television (TV). To reduce the noise, the effects of installation parameters are studied. The experimental parameters under investigation are the distance between the fan and the rear case of a PDP TV, position of the strut on the fan, and the fan RPM. The variance of RPM is the most significant facto., and a 250 RPM decrease from 910 RPM causes about 4㏈(A) reduction in the system noise. To increase performance, flow characteristics are investigated by using a visualization technique and measuring the volume flow rate. The visualized results show that a radial direction flow due to large system resistance is significant, and an axial velocity oscillation is observed from the measurement of the volume flow rate. To prevent both a radial direction flow and an axial velocity oscillation, sponges are inserted in the space between f3n and the rear case. Inserted sponges improve the volume flow rate of cooling fans up to 32% since they convert a radial direction flow to an axial direction flow. Also an axial velocity oscillation with large amplitude and low RPM disappears. Increasing volume flow rate causes the PDP TV to improve its cooling performance. Additionally the same volume flow rate can be obtained with a decreased fan speed due to the inserted sponge. Noise reductions of 4.2 ㏈(A) at the rear and 1.1 ㏈(A) at the front of the TV are obtained by the decreased RPM. An increase of 10% of the volume flow rate is also achieved by inserting sponges.

  • PDF