• Title/Summary/Keyword: Rate of volume change

Search Result 610, Processing Time 0.026 seconds

Volume change pattern of decompression of mandibular odontogenic keratocyst

  • Park, Jin Hoo;Kwak, Eun-Jung;You, Ki Sung;Jung, Young-Soo;Jung, Hwi-Dong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.2.1-2.6
    • /
    • 2019
  • Objectives: This study was aimed to analyze the reducing pattern of decompression on mandibular odontogenic keratocyst and to determine the proper time for secondary enucleation. Materials and methods: Seventeen patients with OKC of the mandible were treated by decompression. Forty-five series of CT data were taken during decompression and measured by using InVivo software (Anatomage, San Jose, Calif) and were analyzed. Results: The expected relative volume during decompression is calculated using the following formula: V(t) = Vinitial × exp.(at + 1/2bt2) (t = duration after decompression (day)). There was no significant directional indicator in the rate of reduction between buccolingual and mesiodistal widths. Conclusion: The volume reduction rate gradually decreased, and 270 days were required for 50% volume reduction following decompression of OKC. The surgeon should be aware of this pattern to determine the timing for definitive enucleation. Clinical relevance: The volume reduction rate and pattern of decompression of the OKC can be predicted and clinicians should be considered when treating OKC via decompression.

A Clinical Evaluation of the Tumor Volume Doubling Time in Primary Bronchogenic Carcinoma (폐암환자에서 본 Tumor Doubling Time 의 임상적 의의)

  • 홍기우;이홍균
    • Journal of Chest Surgery
    • /
    • v.6 no.1
    • /
    • pp.15-22
    • /
    • 1973
  • The definition of cancer, its diagnosis and its prognosis all depend upon description of growth. To the layman a synonym for cancer is a "growth". There are no quantitative terms for the description of growth or growth rate in clinical use. There has been no attempt to assign values that would define "rapidly" or "slowly" growing. Estimates of growth potentiality are implied in the descriptive phrases "poorly differentiated" or "well differentiated", "highly malignant" or "low grade malignancy". and in systems of grading. These qualifying terms represent a personal impression, clinically useful in prognosis, but relative in nature. They do not lend themselves to uniform application or precise measurement for purpose of comparison. Growth is related to size and time. The volume of tumor depends upon the duration of the period of growth and the rate of growth. If the interval and change in volume are known. the average growth rate can be determined. If the growth rate is determined, and assumed to be constant., the duration of a given tumor and the time of inception can be estimated. The commonest concept of the origin of cancer is that as a result of a mutation involving a single cell, succeeding divisions of cells establish a colony with the characteristics recognizable as cancer. If the growth rate of the hypothetical tumor were constant it could be described in terms of "tumor volume doubling time". In the department of thoracic surgery of St. Mary hospital in Catholic Medical College, a clinical evaluation for the growth rate, degree of malignancy, resectability and prognosis was done on a total 24 cases of primary bronchogenic carcinoma which contour was significant on the chest X-ray film as possible estimating the tumor volume doubling time. The following results were obtained: 1. In the cases of 6.0cm or more in diameter of minor size at operation the resectability rate was lower and in the cases of 60 days or more in the tumor or volume doubling time the resectability rate was higher. 2. If differentiation of cancer cells was lower graded in tissue pathology, the tumor volume was shorter and the resectability rate was lower. 3. The tumor volume doubling time of the primary bronchogenic carcinoma occured more over 60 years of age was slightly shorter than under 60 years of age. 4. The tumor size at operation was more important to evaluate the survival time and prognosis than the tumor volume doubling time because the tumor growth was not always constant, we presume.mor volume doubling time because the tumor growth was not always constant, we presume.

  • PDF

Salivary secretion and salivary stress hormone level changes induced by tongue rotation exercise

  • Mizuhashi, Fumi;Koide, Kaoru
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.204-209
    • /
    • 2020
  • PURPOSE. Prevention of xerostomia and stress is important to prolong healthy life expectancy and improve the quality of life. We aimed to investigate the effects of tongue rotation exercise for increasing salivary secretions and stabilizing salivary stress hormone levels. MATERIALS AND METHODS. Twenty four participants without subjective oral dryness were enrolled. The exercises comprised tongue rotation exercise and empty chewing. The salivary stress hormone level was measured using a Salivary Amylase Monitor. Unstimulated whole saliva volume and salivary amylase activity were measured before tongue rotation exercise or empty chewing and subsequently 5, 10, and 15 minutes after these exercises. Differences in the rates of change of unstimulated whole saliva volume and salivary amylase activity were analyzed by repeated measure analysis of variance. RESULTS. Statistically significant differences among the rates of change were not observed after empty chewing for unstimulated whole saliva volume and salivary amylase activity at the four measurement times. However, the rate of change of unstimulated whole saliva volume and salivary amylase activity were statistically significantly different among the four time points: before the tongue rotation exercise and 5, 10, and 15 minutes post-exercise (P<.05 and P<.01, respectively). CONCLUSION. Tongue rotation is effective in increasing saliva secretion, reducing stress, improving oral function, and extending healthy life expectancy.

Estimating Stand Volume Pinus densiflora Forest Based on Climate Change Scenario in Korea (미래 기후변화 시나리오에 따른 우리나라 소나무 임분의 재적 추정)

  • Kim, Moonil;Lee, Woo-Kyun;Guishan, Cui;Nam, Kijun;Yu, Hangnan;Choi, Sol-E;Kim, Chang-Gil;Gwon, Tae-Seong
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.105-112
    • /
    • 2014
  • The main purpose of this study is to measure spatio-temporal variation of forest tree volume based on the RCP(Representative Concentration Pathway) 8.5 scenario, targeting on Pinus densiflora forests which is the main tree species in South Korea. To estimate nationwide scale, $5^{th}$ forest type map and National Forest Inventory data were used. Also, to reflect the impact of change in place and climate on growth of forest trees, growth model reflecting the climate and topography features were applied. The result of the model validation, which compared the result of the model with the forest statistics of different cities and provinces, showed a high suitability. Considering the continuous climate change, volume of Pinus densiflora forest is predicted to increase from $131m^3/ha$ at present to $212.42m^3/ha$ in the year of 2050. If the climate maintains as the present, volume is predicted to increase to $221.92m^3/ha$. With the climate change, it is predicted that most of the region, except for some of the alpine region, will have a decrease in growth rate of Pinus densiflora forest. The growth rate of Pinus densiflora forest will have a greater decline, especially in the coastal area and the southern area. With the result of this study, it will be possible to quantify the effect of climate change on the growth of Pinus densiflora forest according to spatio-temporal is possible. The result of the study can be useful in establishing the forest management practices, considering the adaptation of climate change.

A Comparative Study on the Characteristics of Accelerated aging at Low and High Temperatures of the Fluorocarbon Rubber Composites (불소 고무복합체의 저온과 고온촉진노화 특성에 대한 비교 연구)

  • Park, JeongBae;Lee, BeomCheol;Jeong, YoonSeok;Park, SungHan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.915-922
    • /
    • 2017
  • The study on the thermal and oil resistance rubber composite, 2016. [6] predicted the lifetime of Fluorocarbon Rubber by accelerating aging at high temperature ($150^{\circ}C$, $175^{\circ}C$, $200^{\circ}C$). general rubber products are likely to exhibit different properties depending on the degradation factors such as temperature, humidity, ozone, light, emulsion, mechanical and electrical stress. To solve these problems, We compared the rate of change about tensile strength, elongation rate, volume change rate, weight change rate, thickness change rate, thermal conductivity in low temperature promoting aging on the basis of predictive lifetime of high temperature promoting aging. As a result of the review, the required life expectancy was satisfied, but there was a slight difference in the rate of change between the high-temperature promoted aging life result and the low temperature promoted aging life result. The cause was a reduction in "tensile strength / elongation" and an increase in "volume / weight / thickness" caused by the main chain decomposition of fluorine rubber due to aging at high temperature promoting aging. However, the low temperature promoting aging was caused by the curing reaction of fluorine rubber at $80^{\circ}C$. The tensile strength / elongation and volume / weight / thickness changes were small.

  • PDF

Numerical Study on the Characteristics of Pressure Pulsations according to Design Factors of Fuel Rail with Self Damping Effect (자체 맥동 감쇠 효과를 갖는 연료레일의 설계 변수별 압력맥동 특성에 관한 수치적 연구)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Song, Kyung-Suk;Kim, Bo-Kyoum
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.186-192
    • /
    • 2007
  • In general, pulsation damper is installed in fuel rail for conventional MPI engine to decrease undesirable noise in vehicle cabin room. However, pulsation damper is so expensive that there are prevailing studies to reduce fuel pressure pulsations with integrated damping effect. This paper is one of basic studies for development of fuel rail to abate pulsations with self-damping effect. Primarily, the pressure pulsation characteristics was investigated with aspect ratio of cross section, wall thickness, and materials of fuel rail. A high aspect ratio or thin wall was found to absorb the pressure pulsations effectively. But volume effects on the fuel pressure pulsation reductions were not especially significant than cross section effects because volume increment rate is larger than pressure pulsation reduction rate. The fuel rail made of aluminum is effective for reduction of pressure pulsation than that of low-carbon steel. Pressure change period increases on the basis of same lengths of supply line and fuel rail as the volume is enlarged and/or the thickness of wall is thinned.

A Comprehensive Swelling Model of Silicide Dispersion Fuel for Research Reactor (연구로용 우라늄실리사이드 분산형 핵연료의 팽윤모델)

  • Woan Hwang;Suk, Ho-Chun;Jae, Won-Mok
    • Nuclear Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.40-51
    • /
    • 1992
  • One of the important irradiation performance characteristics of the silicide dispersion fuel element in research reactors is the diameteral increase resulting from fuel swelling. This paper, will attempt to develop a physical model for the fuel swelling, DFSWELL, by analyzing the basic irradiation behaviours and some experimental evidences. From the experimental evidences, it was shown that the volume changes in irradiated U$_3$Si-Al were strongly dependent on temperature and fission rate. The quantitative-amount of swelling for silicide fuel is estimated by considering temperature, fission rate, solid fission product build-up and gas bubble behavior. The swelling for the silicide fuel is comprised of three major components : i ) a volume change due to the formation of an interfacial layer between the fuel particle and matrix. ii ) a volume change due to the accumulation of gas bubble nucleation iii ) a volume change due to the accumulation of solid fission products The DFSWELL model which takes into account the above three major physical components predicts well the absolute magnitude of silicide fuel swelling in accordance with the power histories in comparison with the experimental data.

  • PDF

The Influence of Temperature and Strain Rate on the Mechanical Behavior in Uranium

  • Lee, Key-Soon;Park, Won-Koo
    • Nuclear Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.73-78
    • /
    • 1978
  • The effect of temperature and strain rate on the deformation behavior of $\alpha$-uranium was investigated in the temperature ranged 300$^{\circ}$ to 55$0^{\circ}C$ by strain, rate change test. Strain rate sensitivity, activation volume, strain rate sensitivity exponent and dislocation velocity exponent were determined. The strain rate sensitivity exponent and dislocation velocity exponent were determined. The strain rate sensitivity exponent increases with strain below 40$0^{\circ}C$, while the exponent decreases with strain above 50$0^{\circ}C$. It is believed that the increase of strain rate sensitivity exponent with strain below 40$0^{\circ}C$ can be attributed to an increase in internal stress as a result of work hardening while decrease of the exponent with strain above 50$0^{\circ}C$ is due to predominance of thermal softening over work hardening because more slip, system are active in deformation above about 50$0^{\circ}C$.

  • PDF

The Evaluation of Effect Indicators on Estimation of Aeration Volume for Wastewater Treatment Plants (하수처리장 송풍량 산정에 미치는 영향 인자들의 평가)

  • Kim, Byoung Soo;Choi, Mi Young;Kwon, Hyuck;Kim, Jin Man;Cha, Woon Ou;Chun, Wan Myung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.38-44
    • /
    • 2013
  • To construct the system controlling the aeration volume for D wastewater treatment plant effectively, the fluctuation of aeration volume was analyzed with changes of factors of the influent. As a result, the range of aeration volume was wide to maintain the certain concentration of DO, and the key factor to decide the aeration volume was found to be the temperature, F/M ratio, the loading rate of $BOD_5$ and T-N of the influent. Among the factors, the temperature of the influent had the most decisive effect on the aeration volume. The result showed that $45.8m^3/h$ of the aeration volume was needed with an increase of $1^{\circ}C$ of the influent, and the effect of the season was considered. Since the temperature of the influent is affected by a change of season, same as F/M ratio, the loading rate of the influent and the concentration of MLSS, it seemed that the change of the temperature of the influent affects the aeration volume even more. Therefore, it is preferable to consider the loading rate of the influent and F/M ratio altogether, rather than considering only one factor when deciding aeration volume.