• Title/Summary/Keyword: Rate Splitting Multiple Access

Search Result 6, Processing Time 0.019 seconds

Unlicensed Band Traffic and Fairness Maximization Approach Based on Rate-Splitting Multiple Access (전송률 분할 다중 접속 기술을 활용한 비면허 대역의 트래픽과 공정성 최대화 기법)

  • Jeon Zang Woo;Kim Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.10
    • /
    • pp.299-308
    • /
    • 2023
  • As the spectrum shortage problem has accelerated by the emergence of various services, New Radio-Unlicensed (NR-U) has appeared, allowing users who communicated in licensed bands to communicate in unlicensed bands. However, NR-U network users reduce the performance of Wi-Fi network users who communicate in the same unlicensed band. In this paper, we aim to simultaneously maximize the fairness and throughput of the unlicensed band, where the NR-U network users and the WiFi network users coexist. First, we propose an optimal power allocation scheme based on Monte Carlo Policy Gradient of reinforcement learning to maximize the sum of rates of NR-U networks utilizing rate-splitting multiple access in unlicensed bands. Then, we propose a channel occupancy time division algorithm based on sequential Raiffa bargaining solution of game theory that can simultaneously maximize system throughput and fairness for the coexistence of NR-U and WiFi networks in the same unlicensed band. Simulation results show that the rate splitting multiple access shows better performance than the conventional multiple access technology by comparing the sum-rate when the result value is finally converged under the same transmission power. In addition, we compare the data transfer amount and fairness of NR-U network users, WiFi network users, and total system, and prove that the channel occupancy time division algorithm based on sequential Raiffa bargaining solution of this paper satisfies throughput and fairness at the same time than other algorithms.

Power Control in RF Energy Harvesting Networks (무선 에너지 하비스팅 네트워크에서의 전력 제어 기법)

  • Hwang, Yu Min;Shin, Dong Soo;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.51-55
    • /
    • 2017
  • This paper aims to maximize the energy harvesting rate and channel capacity in RF-energy harvesting networks (RF-EHNs) under the constraints of maximum transmit power and minimum quality of service (QoS) in terms of rate capacity for each user. We study a multi-user RF-EHN with frequency division multiple access (FDMA) in a Rayleigh channel. An access point (AP) simultaneously transmitting wireless information and power in the RF-EHN serves a subset of active users which have a power-splitting antenna. To gauge the network performance, we define energy efficiency (EE) and propose an optimization solution for maximizing EE with Lagrangian dual decomposition theory. In simulation results, we confirm that the EE is effectively maximized by the proposed solution with satisfying the given constraints.

Physical Layer Security for Two-Way Relay NOMA Systems with Energy Harvesting

  • Li, Hui;Chen, Yaping;Zou, Borong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.2094-2114
    • /
    • 2022
  • Due to the wide application of fifth generation communication, wireless sensor networks have become an indispensable part in our daily life. In this paper, we analyze physical layer security for two-way relay with energy harvesting (EH), where power splitter is considered at relay. And two kinds of combined methods, i.e., selection combining (SC) and maximum ratio combining (MRC) schemes, are employed at eavesdropper. What's more, the closed-form expressions for security performance are derived. For comparison purposes, this security behaviors for orthogonal multiple access (OMA) networks are also investigated. To gain deeper insights, the end-to-end throughput and approximate derivations of secrecy outage probability (SOP) under the high signal-to-noise ratio (SNR) regime are studied. Practical Monte-Carlo simulative results verify the numerical analysis and indicate that: i) The secure performance of SC scheme is superior to MRC scheme because of being applied on eavesdropper; ii) The secure behaviors can be affected by various parameters like power allocation coefficients, transmission rate, etc; iii) In the low and medium SNR region, the security and channel capacity are higher for cooperative non-orthogonal multiple access (NOMA) systems in contrast with OMA systems; iv) The systematic throughput can be improved by changing the energy conversion efficiency and power splitting factor. The purpose of this study is to provide theoretical direction and design of secure communication.

On Power Splitting under User-Fairness for Correlated Superposition Coding NOMA in 5G System

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.68-75
    • /
    • 2020
  • Non-orthogonal multiple access (NOMA) has gained the significant attention in the fifth generation (5G) mobile communication, which enables the advanced smart convergence of the artificial intelligence (AI), the internet of things (IoT), and many of the state-of-the-art technologies. Recently, correlated superposition coding (SC) has been proposed in NOMA, to achieve the near-perfect successive interference cancellation (SIC) bit-error rate (BER) performance for the stronger channel users, and to mitigate the severe BER performance degradation for the weaker channel users. In the correlated SC NOMA scheme, the stronger channel user BER performance is even better than the perfect SIC BER performance, for some range of the power allocation factor. However, such excessively good BER performance is not good for the user-fairness, i.e., the more power to the weaker channel user and the less power to the stronger channel user, because the excessively good BER performance of the stronger channel user results in the worse BER performance of the weaker channel user. Therefore, in this paper, we propose the power splitting to establish the user-fairness between both users. First, we derive a closed-form expression for the power splitting factor. Then it is shown that in terms of BER performance, the user-fairness is established between the two users. In result, the power splitting scheme could be considered in correlated SC NOMA for the user-fairness.

Application Scenarios of Nautical Ad-hoc Network in Wireless Mobile Communication under Maritime Environment (해상 환경에서의 무선 이동 통신을 위한 선박용 Ad-hoc 네트워크 운용 시나리오)

  • Kim, Young-Bum;Chang, Kyung-Hi;Yun, Chang-Ho;Park, Jong-Won;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2097-2104
    • /
    • 2009
  • In terrestrial communications, high data rate transmission can be achieved by splitting the coverage area into small cells through base stations and reusing the resource efficiently. However, the geographical features of maritime communications require the long transmission range, and it is not practical to install base station on the sea to set up the similar deployment as the terrestrial communications, so MF/HF band modem with low data rate are currently utilized for maritime communications. And the expensive satellite communication via Inmarsat is the conventional solution for the high data rate transmission on the sea. To reduce the cost, Ad-hoc network is proposed to apply on the sea, which requires no base station for the peer-to-peer communications. In this paper, we denominate this maritime environment specific Ad-hoc network as Nautical Ad-hoc Network (NANET). Furthermore, the deployment scenario for the NANET, and the analysis on multiple access and duplexing schemes for the NANET are discussed in this paper, which serves as the cornerstone for the further NANET research and development.

Traffic Engineering and Manageability for Multicast Traffic in Hybrid SDN

  • Ren, Cheng;Wang, Sheng;Ren, Jing;Wang, Xiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2492-2512
    • /
    • 2018
  • Multicast communication can effectively reduce network resources consumption in contrast with unicast. With the advent of SDN, current researches on multicast traffic are mainly conducted in the SDN scenario, thus to mitigate the problems of IP multicast such as the unavoidable difficulty in traffic engineering and high security risk. However, migration to SDN cannot be achieved in one step, hybrid SDN emerges as a transitional networking form for ISP network. In hybrid SDN, for acquiring similar TE and security performance as in SDN multicast, we redirect every multicast traffic to an appropriate SDN node before reaching the destinations of the multicast group, thus to build up a core-based multicast tree substantially which is first introduced in CBT. Based on the core SDN node, it is possible to realize dynamic control over the routing paths to benefit traffic engineering (TE), while multicast traffic manageability can also be obtained, e.g., access control and middlebox-supported network services. On top of that, multiple core-based multicast trees are constructed for each multicast group by fully taking advantage of the routing flexibility of SDN nodes, in order to further enhance the TE performance. The multicast routing and splitting (MRS) algorithm is proposed whereby we jointly and efficiently determine an appropriate core SDN node for each group, as well as optimizing the traffic splitting fractions for the corresponding multiple core-based trees to minimize the maximum link utilization. We conduct simulations with different SDN deployment rate in real network topologies. The results indicate that, when 40% of the SDN switches are deployed in HSDN as well as calculating 2 trees for each group, HSDN multicast adopting MRS algorithm can obtain a comparable TE performance to SDN multicast.