• Title/Summary/Keyword: Rat neutrophils

Search Result 78, Processing Time 0.032 seconds

The Role of Neutrophils and Epidermal Growth Factor Receptors in Lipopolysaccharide-Induced Mucus Hypersecretion (리포다당질 (lipopolysaccharide)에 의한 기관지 점액 생성 기전에서 호중구와 상피세포 성장인자 수용체 (epidermal growth factor receptor)의 역할)

  • Bak, Sang Myeon;Park, Soo Yeon;Hur, Gyu Young;Lee, Seung Heon;Kim, Je Hyeong;Lee, Sang Yeub;Shin, Chol;Shim, Jae Jeong;In, Kwang Ho;Kang, Kyung Ho;Yoo, Se Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.1
    • /
    • pp.80-90
    • /
    • 2003
  • Background : Goblet cell hyperplasia is a critical pathological feature in hypersecretory diseases of the airways. A bacterial infection of the lung is also known to induce inflammatory responses, which can lead to the overproduction of mucus. Recently, mucin synthesis in the airways has been reported to be regulated by neutrophilic inflammation-induced epidermal growth factor receptor (EGFR) expression and activation. In addition, it was reported that migration of the activated neutrophils is dependent on the matrix metalloproteinases (MMPs), especially MMP-9. In this study, bacterial lipopolysaccharide (LPS)-induced goblet cell hyperplasia and mucus hypersecretion by EGFR cascade, resulting from the MMPs-dependent neutrophilic inflammation were investigated in the rat airways. Methods : Pathogen-free Sprague-Dawley rats were studied in vivo. Various concentrations of LPS were instilled into the trachea in $300{\mu}{\ell}$ PBS (LPS group). Sterile PBS ($300{\mu}{\ell}$) was instilled into the trachea of the control animals (control group). The airways were examined on different days after instilling LPS. For an examination of the relationship between the LPS-induced goblet cell hyperplasia and MMPs, the animals were pretreated 3 days prior to the LPS instillation and daily thereafter with the matrix metalloproteinase inhibitor (MMPI; 20 mg/Kg/day of CMT-3; Collagenex Pharmaceuticals, USA). The neutrophilic infiltration was quantified as a number in five high power fields (HPF). The alcian blue/periodic acid-Schiff (AB/PAS) stain were performed for the mucus glycoconjugates and the immunohistochemical stains were performed for MUC5AC, EGFR and MMP-9. Their expressions were quantified by an image analysis program and were expressed by the percentage of the total bronchial epithelial area. Results : The instillation of LPS induced AB/PAS and MUC5AC staining in the airway epithelium in a time- and dose-dependent manner. Treatment with the MMPI prevented the LPS-induced goblet cell hyperplasia significantly. The instillation of LPS into the trachea induced also EGFR expression in the airway epithelium. The control airway epithelium contained few leukocytes, but the intratracheal instillation of LPS resulted in a neutrophilic recruitment. A pretreatment with MMPI prevented neutrophilic recruitment, EGFR expression, and goblet cell hyperplasia in the LPS-instilled airway epithelium. Conclusion : Matrix metalloproteinase is involved in LPS-induced mucus hypersecretion, resulting from a neutrophilic inflammation and EGFR cascade. These results suggest a potential therapeutic role of MMPI in the treatment of mucus hypersecretion that were associated with a bacterial infection of the airways.

Effects of Mahwangbujaseshin-tang (Mahuangfuzixixintang) (麻黃附子細辛湯) on MIA-Induced Osteoarthritis Rats (마황부자세신탕(麻黃附子細辛湯)이 MIA로 유도된 골관절염 유발 Rat에 미치는 영향)

  • Lee, Hyung-Eun;Oh, Min-Seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.24 no.2
    • /
    • pp.65-81
    • /
    • 2014
  • Objectives This study was carried out to find out the anti-osteoarthritic effects of Mahwangbujaseshin- tang (Mahuangfuzixixintang ) on the monosodium iodoacetate (MIA)-induced osteoarthritis rats. Methods Osteoarthritis was induced by injecting MIA ($50{\mu}l$) into the knee joint of rats. Rats were divided into a 3 groups (n=7). The injection did not fit the normal group. A week later, after the injection of MIA, while control group took normal saline 2 ml, the extract of Mahwangbujaseshin-tang (Mahuangfuzixixintang ) (MBST) (200 mg/kg) was injected to treated group. After that, we examined hind paw weight bearing ability, functions of liver and kidney, serum TNF-$\alpha$, IL-$1{\beta}$, IL-6, $PGE_2$, $LTB_4$, TIMP-1, MMP-9 and hematology. Volume of cartilage was measured by micro CT arthrography. Injury of synovial tissue was measured by H & E, Safranin-O immunofluorescence. Results 1) DPPH and ABTS free radical scavenging activity of MBST was increased according to concentration of MBST and total phenolic contents were in high level. 2) In RAW 264.7 cells, ROS production was significantly decreased in MBST (at 10, $100{\mu}g/ml$) and NO was also decreased but meaningless in MBST (at $100{\mu}g/ml$). 3) In RAW 264.7 cells, IL-6 production was significantly decreased in MBST (at $100{\mu}g/ml$) and TNF-$\alpha$ and IL-$1{\beta}$ production were also decreased but meaningless in MBST (at $100{\mu}g/ml$). 4) In hind legs weight-bearing measurement, level of weight-bearing was increased. 5) Functions of liver and kidney were not affected. 6) TNF-$\alpha$, IL-$1{\beta}$, IL-6, $PGE_2$, $LTB_4$, MMP-9 and TIMP-1 production were significantly decreased. 7) In hematology, the levels of neutrophils, monocytes were significantly decreased and the levels of white blood cells, lymphocytes were also decreased but meaningless. 8) In micro CT-arthrography, cartilage volume was significantly increased. 9) Histopathologically, injury on cartilage and synovial membrane of MBST group was decreased. Conclusions Based on all results mentioned above, Mahwangbujaseshin-tang (Mahuangfuzixixintang) is believed to be meaningful for suppressing the progress of osteoarthritis. And it is related to inhibiting the activity of inflammatory cytokine and injury of volume in cartilage.

Effects of Lonicerae Flos Extracts on LPS-induced Acute Lung Injury (금은화가 LPS로 유발된 급성 폐 손상에 미치는 영향)

  • Yi, Chang-Geon;Choi, Hae-Yun;Park, Mee-Yeon;Kim, Jong-Dae
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.15 no.1
    • /
    • pp.49-69
    • /
    • 2011
  • Objective : The object of this study was to observe the effects of Lonicerae Flos (LF) aqueous extracts on lipopolysaccharide (LPS)-induced rat acute lung injury. Method : Five different dosages of LF extracts were orally administered once a day for 28 days before LPS treatments, and then all rats were sacrificed after 5 hour-treatment of LPS. Eight groups of 16 rats each were used in the present study. The following parameters caused by LPS treatment were observed ; body weights, lung weights, pulmonary transcapillary albumin transit, arterial gas parameters (pH, $PaO_2$ and $PaCO_2$) bronchoalveolar lavage fluid (BALF) protein lactate dehydrogenase (LDH), and proinflammatory cytokines tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$) contents, total cell numbers, neutrophil and alveolar macrophage ratios, lung malondialdehyde (MDA), myeloperoxidase (MPO), proinflammatory cytokines TNF-${\alpha}$ and IL-$1{\beta}$ contents. In addition, the histopathologic changes were observed in the lung in terms of luminal surface of alveolus, thickness of alveolar septum, number of polymorphonuclear neutrophils. Result : As results of LPS-injection, dramatical increases in lung weights, pulmonary transcapillary albumin transit increases, increases in $PaCO_2$, decreases in pH of arterial blood and $PaO_2$, increases of BALF protein, LDH, TNF-${\alpha}$ and IL-$1{\beta}$ contents, total cells, neutrophil and alveolar macrophage ratios, TNF-${\alpha}$ and IL-$1{\beta}$ contents increases were detected with decreases in LSA and increases of alveolar septum and PMNs numbers, respectively as compared with intact control. These are means that acute lung injuries (resembling acute respiratory distress syndrome) are induced by treatment of LPS mediated by inflammatory responses, oxidative stress and related lipid peroxidation in the present study. However, these LPS-induced acute lung injuries were inhibited by 28 days continuous pretreatment of 250 and 500mg/kg of LF extracts. Because of lower three dosages of LF treated groups, 31.25 and 62.5 and 125mg/kg did not showed any favorable effects as compared with LPS control, the effective dosages of LF in LPS-induced acute lung injuries in the present study, is considered as about 125mg/kg. The effects of 250mg/kg of LF extracts showed almost similar effects with ${\alpha}$-lipoic acid 60mg/kg in preventing LPS-induced acute lung injuries. Conclusion : It seems that LF play a role in protecting the acute respiratory distress syndrome caused by LPS.

Effect of blended protein nutritional support on reducing burn-induced inflammation and organ injury

  • Yu, Yonghui;Zhang, Jingjie;Wang, Jing;Wang, Jing;Chai, Jiake
    • Nutrition Research and Practice
    • /
    • v.16 no.5
    • /
    • pp.589-603
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Previous studies have reported that protein supplementation contributes to the attenuation of inflammation. Serious trauma such as burn injury usually results in the excessive release of inflammatory factors and organs dysfunction. However, a few reports continued to focus on the function of protein ingestion in regulating burn-induced inflammation and organ dysfunction. MATERIALS/METHODS: This study established the rat model of 30% total body surface area burn injury, and evaluated the function of blended protein (mixture of whey and soybean proteins). Blood routine examination, inflammatory factors, blood biochemistry, and immunohistochemical assays were employed to analyze the samples from different treatment groups. RESULTS: Our results indicated a decrease in the numbers of white blood cells, monocytes, and neutrophils in the burn injury group administered with the blended protein nutritional support (Burn+BP), as compared to the burn injury group administered normal saline supplementation (Burn+S). Expressions of the pro-inflammatory factors (tumor necrosis factor-α and interleukin-6 [IL-6]) and chemokines (macrophage chemoattractant protein-1, regulated upon activation normal T cell expressed and secreted factor, and C-C motif chemokine 11) were dramatically decreased, whereas anti-inflammatory factors (IL-4, IL-10, and IL-13) were significantly increased in the Burn+BP group. Kidney function related markers blood urea nitrogen and serum creatinine, and the liver function related markers alanine transaminase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase were remarkably reduced, whereas albumin levels were elevated in the Burn+BP group as compared to levels obtained in the Burn+S group. Furthermore, inflammatory cells infiltration of the kidney and liver was also attenuated after burn injury administered with blended protein supplementation. CONCLUSIONS: In summary, nutritional support with blended proteins dramatically attenuates the burn-induced inflammatory reaction and protects organ functions. We believe this is a new insight into a potential therapeutic strategy for nutritional support of burn patients.

Protective Effect of Nitroglycerin on the Ischemia-Reperfusion Model of the Isolated Rat Lung (흰쥐의 분리 폐장 관류 모델에서 Nitroglycerin의 폐장 보존 효과)

  • Jheon, Sang-Hoon;Lee, Sub;Lee, Jong-Hoon;Son, Bok-Kyoung;Cho, Gong-Rae;Chung, Jin-Yong;Cho, Soung-Kyung;Kim, Bong-Il;Lee, Young-Man;Choh, Joong-Haeng
    • Journal of Chest Surgery
    • /
    • v.36 no.12
    • /
    • pp.894-903
    • /
    • 2003
  • Protection against ischemia-reperfusion injury is crucial for successful transplantation of the lung. It has been known that nitric oxide has many favorable effects on the donor lungs but at the same time, has some potential side effects of cytotoxicity. In this regards, we investigated whether the administration of nitroglycerin could decrease ischemia-reperfusion injury in isolated rat lung reperfusion model for the confirmation of the effect of nitroglycerin, a donor of nitric oxide, on lung transplantation. Material and Method: 35 Sprague-Dawley species male white rats were used for this experiment. For nitroglycerin group (n=18), nitroglycerin was administered intravenously followed by mixed in flushing solution for preservation. As a control group (n=17), we used the same amount of normal saline. To evaluate the effect of nitroglycerin on the lung, heart-lung block was obtained, weighed and stored in University of Wisconsin Solution at 1$0^{\circ}C$ for 24 hours. In each group of the isolated lungs, reperfusion was carried out with Krebs-Hensleit-diluted human blood for 60 minutes. As parameters of the state of the isolated lung, peak inspiratory and pulmonary arterial pressures were continuously recorded. Oxygen and carbon dioxide tension of reperfusing blood were measured before and after 30, 60 minutes of reperfusion. After sixty minutes of reperfusion, protein content in bronchoalveolar lavage fluid was measured also for the evaluation of the degree of alveolar flooding. Lung myeloperoxidase activity was determined to verify the accumulation of neutrophils. Results: Although statistically significant differences were not noted in peak inspiratory and pulmonary arterial pressure between control and nitroglycerin group, latter group showed lowering tendency of pulmonary arterial pressure during the entire reperfusion period. Oxygen tension was higher (p<0.05) in nitroglycerin group compared with that of the control group, in contrast, there were no differences in carbon dioxide tension, protein content in bronchoalveolar lavage fluid and myeloperoxidase activity between the groups. In the examination of ultrastructural changes, nitroglycerin denoted the protective effect on the pulmonary architecture compared with that of control group. Conclusion: Collectively, on the bases of these experimental results, prior treatment of donor lung with nitroglycerin could result in better preservation of the lung. Consequently, these nitroglycerin preserved lungs are thought to be more suitable for successful transplantation of the lung.

Fine Structure and Detoxification Kinetics in Kupffer Cells after Injection of Endotoxin in Rats (내독소 투여에 의한 Kupffer 세포의 미세형태학적 해독반응)

  • Choi, Joon-Hyuk;Choi, Won-Hee;Lee, Tae-Sook
    • Journal of Yeungnam Medical Science
    • /
    • v.10 no.2
    • /
    • pp.313-337
    • /
    • 1993
  • The aim of this study was to clarify the role of Kupffer cells in the mechanism of endotoxin-induced liver injury. The study on fine structure of Kupffer cells was performed after the injection of endotoxin. The endotoxin(Escherichia coli lipopolysaccharide 026 : B6. 1.5mg/100 g of body weight) was intraperitoneally injected in Sprague-Dewley rats. Animals were sacrificed at 1/4, 1/2, 1, 2, 4, 8, 16, 24, 72 and 120 hours after the injection of endotoxin. Livers were extirpated and processed to be examined by light and electron microscopy. The results obtained were summerized as follows: Early changes observed in liver after endotoxin injection included the increased number and hypertrophy of Kupffer cells, infiltration of neutrophils and presence of fibrin thrombi within the sinusoids. The continuous increase of the Kupffer cells in number with hypertrophy, congestion and infiltration of inflammatory cells within the sinusoids were observed. Hepatocytes showed fatty change and occasional necrosis. At 72 hours the congestion decreased. At 120 hours the number of Kupffer cells was increased, but the morphology of Kupffer cells became similar to that of the control group. The numbers and sizes of primary and secondary lysosomes and amount of euchromatin of Kupffer cells increased. Swellings and increase in number of mitochondria, Golgi complex, smooth endoplasmic reticulum, rough endoplasmic reticulum were evident. Microthrombi were present within the sinusoids. The swelling of rough endoplasmic reticulum and mitochondria, decrease of glycogen particles, fatty change, hypoxic vacuoles, pyknotic nuclei and occasional necrosis were observed in hepatocytes. At 72 hours the number of secondary lysosomes in Kupffer cells decreased. At 120 hours the morphology of Kupffer cells became similar to that of the control group. According to these results, it was postulated that the endotoxin was initially taken up by pinocytosis into Kupffer cells and degraded in secondary lysosomes of activated Kupffer cells. Kupffer cells may play an important role in the defense mechanism of liver during endotoxemia. The dysfunction of Kupffer cells and ischemia by sinusoidal microthrombi may cause liver injury.

  • PDF

Detoxicating Effects of Oriental Herb Extract Mixtures on Nicotine and Dioxin (생약재 추출물의 nicotine 및 dioxin 해독효과)

  • Park, Ki-Moon;Hwang, Jin-Kook;Shin, Kyoung-Min;Kim, Hyun-Suck;Song, Jae-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.980-987
    • /
    • 2003
  • In this report, we investigated the detoxication effects of Saururus chinenis, Geranium nepalense, Lonicera japonica, Cassia obtusifolia, Glycyrrhiza uralensis, or their mixtures by employing acute toxicity tests for nicotine and dioxin. When fatal doses $(LD_{100}\;=\;42\;mg/kg)$ of nicotine were injected into the abdominal cavities of ICR mice, those treated with OHEM showed delayed paralysis, half the duration of hyperactivity, and a 73 % survival rate. The results revealed the strong detoxicating effects of the mixtures. We also measured the amount of the degradation product of nicotine and cotinine in humans. Consumption of OHEM promoted (he more specific) the metabolic pathways of nicotine, increasing continine excretion by 1.5 times. As a result the amount of cotinine in urine was reduced to less than 5% after treatment with OHEM. In order to test the toxicity of dioxin, we used TcnN(SD)BR rats exposed to TCDD. While TCDD treatment reduced the blood levels of hemoglobin and platelet, OHEM consumption relieved these effects and, furthermore, helped to recover the number of platelet to the normal level (p<0.05). Moreover, neutrophils (%) and monocytes (%), which were reduced by the injection of TCDD, recovered to normal levels upon treatment with OHEM. The amount albumin reduced by TCDD (p<0.05) normalized, while the activities of GOT and GTP increased by TCDD were reduced. Increases in total cholesterol and neutral fatty acids induced by TCDD were also reduced by OHEM injection (p<0.05). In the kidney, TCDD-induced rises in creatinine were suppressed by OHEM treatment, while decreases in iron levels from TCDD were raised to normal. The treatment of TCDD had more toxic effects in the blood and pancreas than on the liver, kidney and heart. On the other hand, the detoxication of OHEM had significant effects on the liver and pancreas. The normalization by OHEM of various clinical abnormalities induced by TCDD demonstrates the detoxicating effect of OHEM that ameliorates systemic metabolism not properly functioning.

Lung Injury Indices Depending on Tumor Necrosis Factor-$\alpha$ Level and Novel 35 kDa Protein Synthesis in Lipopolysaccharide-Treated Rat (내독소처치 흰쥐에서 Tumor Necrosis Factor-$\alpha$치 상승에 따른 폐손상 악화 및 35 kDa 단백질 합성)

  • Choi, Young-Mee;Kim, Young-Kyoon;Kwon, Soon-Seog;Kim, Kwan-Hyoung;Moon, Hwa-Sik;Song, Jeong-Sup;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.6
    • /
    • pp.1236-1251
    • /
    • 1998
  • Background : TNF-$\alpha$ appears to be a central mediator of the host response to sepsis. While TNF-$\alpha$ is mainly considered a proinflammatory cytokine, it can also act as a direct cytotoxic cytokine. However, there are not so many studies about the relationship bet ween TNF-$\alpha$ level and lung injury severity in ALI, particularly regarding the case of ALI caused by direct lung injury such as diffuse pulmonary infection. Recently, a natural defense mechanism, known as the stress response or the heat shock response, has been reported in cellular or tissue injury reaction. There are a number of reports examining the protective role of pre-induced heat stress proteins on subsequent LPS-induced TNF-$\alpha$ release from monocyte or macrophage and also on subsequent LPS-induced ALI in animals. However it is not well established whether the stress protein synthesis such as HSP can be induced from rat alveolar macrophages by in vitro or in vivo LPS stimulation. Methods : We measured the level of TNF-$\alpha$, the percentage of inflammatory cells in bronchoalveolar lavage fluid, protein synthesis in alveolar macrophages isolated from rats at 1, 2, 3, 4, 6, 12, and 24 hours after intratracheal LPS instillation. We performed histologic examination and also obtained histologic lung injury index score in lungs from other rats at 1, 2, 3, 4, 6, 12, 24 h after intratracheal LPS instillation. Isolated non-stimulated macrophages were incubated for 2 h with different concentration of LPS (0, 1, 10, 100 ng/ml, 1, or 10 ${\mu}g/ml$). Other non-stimulated macrophages were exposed at $43^{\circ}C$ for 15 min, then returned to at $37^{\circ}C$ in 5% CO2-95% for 1 hour, and then incubated for 2 h with LPS (0, 1, 10, 100ng/ml, 1, or 10 ${\mu}g/ml$). Results : TNF-$\alpha$ levels began to increase significantly at 1 h, reached a peak at 3 h (P<0.0001), began to decrease at 6 h, and returned to control level at 12 h after LPS instillation. The percentage of inflammatory cells (neutrophils and alveolar macrophages) began to change significantly at 2 h, reached a peak at 6 h, began to recover but still showed significant change at 12 h, and showed insignificant change at 24 h after LPS instillation compared with the normal control. After LPS instillation, the score of histologic lung injury index reached a maximum value at 6 h and remained steady for 24 hours. 35 kDa protein band was newly synthesized in alveolar macrophage from 1 hour on for 24 hours after LPS instillation. Inducible heat stress protein 72 was not found in any alveolar macrophages obtained from rats after LPS instillation. TNF-$\alpha$ levels in supernatants of LPS-stimulated macro phages were significantly higher than those of non-stimulated macrophages(p<0.05). Following LPS stimulation, TNF-$\alpha$ levels in supernatants were significantly lower after heat treatment than in those without heat treatment (p<0.05). The inducible heat stress protein 72 was not found at any concentrations of LPS stimulation. Whereas the 35 kDa protein band was exclusively found at dose of LPS of 10 ${\mu}g/ml$. Conclusion : TNF-$\alpha$ has a direct or indirect close relationship with lung injury severity in acute lung injury or acute respiratory distress syndrome. In vivo and in vitro LPS stimulation dose not induce heat stress protein 72 in alveolar macrophages. It is likely that 35 kDa protein, synthesized by alveolar macrophage after LPS instillation, does not have a defense role in acute lung injury.

  • PDF