• Title/Summary/Keyword: Rat microsomes

Search Result 105, Processing Time 0.026 seconds

Metabolism of an Anionic Fluorescent Dye, 1-Anilino-8-naphthalene Sulfonate (ANS) by Rat Liver Microsomes

  • Chung, Youn-Bok;Bae, Woong-Tak;Han, Kun
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.677-682
    • /
    • 1998
  • The present study was designed to examine the metabolism of 1-anilino-8-naphthalene sulfonate (ANS), an anionic compound which is transported into liver via "multispecific organ ic anion transporter", with rat hepatic microsomes. TLC analysis indicated that the fluorescent metabolites were not produced to a measurable extent, which made it possible to assess the ANS metabolism by measuring the fluorescence disappearance. The metabolism of ANS was remarkably inhibited by the presence of SKF-525A as well as by the substitution of 02 by CO gas. ANS metabolism by microsomes also required NADPH as a cofactor. These results indicated that the microsomal monooxygenase system might be mainly responsible for the ANS metabolism. The maximum velocity ($V_{max}$) and Michaelis constant ($K_m$) were calculated to be $4.3{\pm}0.2$ nmol/min/mg protein and $42.1{\pm}2.0\;{\mu}M$, respectively. Assuming that 1g of liver contains 32mg of microsomal protein, the $V_{max}$ value was extrapolated to that per g of liver ($V_{max}^I$). The intrinsic metabolic clearance ($CL_{int}$) under linear conditions calculated from this in vitro metabolic study was 3.3ml/min/g liver, being comparable with that (3.0ml/min/g liver) calculated by analyzing the in vivo plasma disappearance curve in a previous study. Furthermore, the effects of other organic anions on the metabolism of ANS were examined. Bromophenolblue (BPB) and rose bengal (RB) competitively inhibited the metabolism of ANS, while BSP inhibited it only slightly. The inhibition constant ($K_i$) of BPB ($6\;{\mu}M$) was much smaller than that of RB ($200\;{\mu}M$). In conclusion, the microsomal monooxygenase system plays a major role in the metabolism of ANS, and other unmetabolizable organic anions (BPB and RB) compete for this metabolism.

  • PDF

The Mode of the Activity of Naturally Occurring Furanocoumarins on Hepatic Cytochrome P-450 Enzyme System (천연 Furanocoumarin 유도체들이 간의 Cytochrome P-450 효소계에 미치는 작용기전)

  • Shin, Kuk-Hyun;Woo, Won-Sick
    • Korean Journal of Pharmacognosy
    • /
    • v.21 no.1
    • /
    • pp.74-82
    • /
    • 1990
  • The effects of naturally occurring furanocoumarins on cytochrome P-450 have been investigated in rat liver microsomes. Incubation of microsomes with an NADPH-generating system and four furanocoumarins such as imperatorin, isoimperatorin, phellopterin and byakangelicin at $37^{\circ}$ in vitro resulted in a significant destruction of cytochrome P-450. A single treatment(50 mg/kg, i.p.) of rats with each furanocoumarin caused a rapid loss of cytochrome P-450 accompanied by the loss of heme from the microsomes but not by the loss of cytochrome $b_5$. It is suggested that cytochrome P-450 is specifically destroyed by furanocoumarins in a metabolic process involving destruction of its heme group and as a consequence, hepatic enzyme activities are depressed markedly.

  • PDF

Identification of 1-Furan-2-yl-3-pyridin-2-yl-propenone, an Anti-inflammatory Agent, and Its Metabolites in Rat Liver Subcellular Fractions

  • Lee, Sang-Kyu;Jeon, Tae-Won;Basnet, Arjun;Jeong, Hye-Gwang;Lee, Eung-Seok;Jeong, Tae-Cheon
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.984-989
    • /
    • 2006
  • 1-Furan-2-yl-3-pyridin-2-yl-propenone (FPP-3) has been characterized to have an anti-inflammatory activity through the inhibition of the production of nitric oxide and tumor necrosis $factor-{\alpha}$. In the present studies, the phase 1 metabolism of FPP-3 was investigated in rat liver microsomes and cytosols. When FPP-3 was incubated with rat liver microsomes and cytosols in the presence of NADPH. 2 major peaks were detected on a liquid chromatography/electrospray ionization-mass spectrometry. Two metabolites (i.e., M1 and M2) were characterized as reduced forms on propenone: M1 (1-furan-2-yl-3-pyridin-2-yl-propan-1-one) was the initial metabolite and M2 (1-furan-2-yl-3-pyridin-2-yl-propan-1-ol) was a secondary alcohol believed to be formed from M1.

In Vitro Enhancement of Microsomal Cytochrome P450-Dependent Monooxygenases by Organic Solvents in Rat Liver

  • Lee, Dong-Wook;Lim, Heung-Bin;Moon, Ja-Young;Park, Ki-Hyun
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.391-398
    • /
    • 1998
  • In vitro effects of acetone, methanol, and dimethylsulfoxide (DMSO) on liver microsomal cytochrome P450 (P450) content, and P450-dependent arylhydrocarbon hydroxylase (AHH) and 7-ethoxycoumarin O-deethylase (ECOD) activities were studied in rats. Acetone at 1% (v/v) enhanced the content ofP450, assayed spectrally in 3-methylcholanethrene (MC)- and ${\beta}-naphthoflavone$ (BNF)-inducible microsomes by 18 and 7%, respectively. Methanol, up to 5% (v/v) applied, also showed enhancement effects on P450 content in liver microsomes from rats treated with phenobarbital (PB), MC, and BNF, as well as uninduced microsomes with similar but low strength. DMSO, however, did not show such enhancing effects at the ranges of the concentrations applied. AHH and ECOD activities in MC-inducible microsomes were also enhanced by acetone at 1%, which was in proportion to the increase in P450 content by the same concentration. However, the P450 content, and AHH and ECOD activities, were decreased by increasing the concentration of acetone. Methanol at the same concentration with acetone also enhanced ECOD activity but not AHH activity in MCinducible microsomes. The enhancing effect of acetone on the enzymes was negligible when the microsomes were pretreated with a specific monoclonal antibody of MC-inducible isozyme. The difference in the effects of these solvents on P450 system might be due to their different properties that cause the P450 active site to be exposed in milieu.

  • PDF

Effects of Silk Fibroin in Oxdative Stress and Membrane Fluidity in the Liver of SD Rats (Rat 간장의 산화적 스트레스 및 세포막 유동성에 미치는 실크 피브로인의 영향)

  • 최진호;김대익;박수현;김동우;이광길;여주홍;김정민;이용우
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.1
    • /
    • pp.58-64
    • /
    • 2000
  • This study was designed to investigate the effects of silk fibroin powder (Mw 500) on oxidative stress and membrane fluidity in liver membranes of rats. Sprague-Dawley (SD) male rats (160$\pm$10g) were fed basic diet (control group), and experimental diets (SEP-2.5 and SFP-5.0 groups) added 2.5 and 5.0 g/kg BW/day for 6 weeks. Cholesterol levels resulted in a significant decrease (12.1% and 9.0%, respectively) in the liver mitochondria and microsomes of SEP-5.0 group compared with control group. Membrane fluidity as significantly increased (16.1% and 16.5%, 5.8% and 17.4%) in the liver mitochondria and microsomes were significantly inhibited (16.1% and 18.3%, 8.1% and 15.1%, respectively) at the SFP-2.5 and SEP-5.0 groups compared with control group. Induced oxygen radicals (BOR) in liver mitochondria and microsomes were significantly inhibited (16.1% and 18.3%, 8.1% and 15.1%, respectively) at the SFP-2.5 and SEP-5.0 groups compared with control group. Induced oxygen radicals (IOR) in liver microsomes were significantly inhibited (17.0% and 26.6%, respectively) at the SFP-2.5 and SFP-5.0 groups compared with control group, but IOR in liver mitochondria was significantly inhibited about 12.3% at the SWP-400 group only compared with control group. Lipid peroxide (LPO) levels were significantly decreased (8.3% and 18.0%, 13.4% and 18.4%, respectively) in the liver mitochondria and microsomes of SFP-2.5 and SFP-5.0 groups compared with control group. Oxidized protein (OP) levels were dose-dependently decreased (5.4% and 11.6%, 19.0% and 24.4%, respaectively) in the iver mitochondria and microsomes of SFP-2.5 and SFP-5.0 groups compared with control group. These results suggest that administration of SFP may play an effective role in attenuating an oxidative stress and increasing a membrane fluidity in liver membranes.

  • PDF

Metabolism of YH1885 by Rat, Dog, Monkey and Human Liver S9 Fractions

  • Kim, Eun-Joo;Roh, Jung-Koo;Green, Carol
    • Biomolecules & Therapeutics
    • /
    • v.6 no.3
    • /
    • pp.283-288
    • /
    • 1998
  • YH 1885 (5,6-dimethyl -2-(4-fluorophenylamino)-4-(1-methyl -1,2,3,4-tetrahydroisoquinolin -2- yl) pyrimidine hydrochloride) was developed as an antiulcer drug. The objective of this study was to examine a comparative metabolism of YH1885 in rat, dog, monkey and human liver tissues and to determine the metabolite profiles produced by the four species. YH1885 was metabolized by liver 59 fractions from all four species. Control incubations containing 59 fraction but no cofactors, contained essentially no metabolites. Metabolism of YH1885 apparently became saturated in the concentration range studied because the % of YH 1885 metabolized decreased with increasing drug concentration for all four species. Six to nine metabolite peaks were detected in the incubations and the particular profile of metabolites varied with species. The total amount of metabolites formed by liver microsomes from human and monkey were less than microsomes from rat or dog. The major metabolite peak formed by rat liver 597actions fluted near the solvent front on the HPLC or remained at the origin in TLC, indicating that it contained one or more polar metabolites. Dog liver 59 fractions incubations contained four major metabolites that each accounted for about 15 to 20 % of the total radioactivity at the low concentration of YH1885. The metabolite profiles of YH1885 appeared to be similar in incubations with rhesus monkey and human liver 59 fraction. The amount of metabolites formed by rhesus monkey liver preparations was greater than that of human liver that contained prominent metabolite peaks with approximate relative retention time of 0.14 and 0.43.

  • PDF

Comparison of Characteristics of Hepatic Microsomal Cytochrome P45O-dependent Monooxygenases from Snake and Rat (꽃뱀과 흰쥐의 간 마이크로좀에 존재하는 Cytochrome P45O 의존성 Monooxygenases의 특성 비교)

  • Ja Young Moon;Dong Wook Lee;Ki Hyun Park
    • Journal of Life Science
    • /
    • v.8 no.6
    • /
    • pp.695-701
    • /
    • 1998
  • This study was carried out to investigate levels of the components of microsomal mixed function oxidase (MFO) system and activities of the hepatic microsomal cytochrome P45O (P45O)-dependent monooxygenases of grass snake (Natrix tigrina Lateralis) and to compare with those of rat. The levels of P45O and cytochrome b$_{5}$, (b$_{5}$) of snake were much lower than those in rat. NADPH-cytochrome c reductase activity in the snake was also only 40% of that in the rat. Activities of 7-ethoxycoumarin 0-deethylase (ECOD) and benzphetamine N-demethylase (BPDM) of snake hepatic microsomes, when compared with those of rat, were markedly low. But, aryl hydrocarbon hydroxylase (AHH) and testosterone hydroxylase (TSH) activities were nearly the same or higher than those of the rat. Of the P45O-dependent TSHs measured, 7$\alpha$-hydroxylase activity was the highest in snake, whereas, 6$\beta$-hydroxylase activity was the highest in rat. However, stereoselectivity of the enzyme from the snake to C2 and C6 positions of testoste-rone was the same as rat. The result of radioimmunoassay (RIA) for the identification of five P45O isozymes with MAbs shows that relatively high content of ethanol-inducible P45O isozyme, CYP2El, exists in the rat, whereas MC-inducible P45O isozyme, CYP2A1/1A2, does in the snake. From the analyses of SDS-PAGE and RIA of partially pu-rified P45O, we suggest the possibility of the presence of a certain P45O isozyme(s) in hepatic microsomes of snake different from those of rat.

  • PDF

Antioxidative Activity of Extrcts from Fruit of Curdrania tricuspidata (꾸지뽕나무 열매 추출물의 항산화 활성)

  • 차재영;조영수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.3
    • /
    • pp.547-551
    • /
    • 2001
  • The comparative activities of acetone, ethanol, and aqueous fractions extracted from fruit powder of Cudrania tricuspidata by different temperature were tested by in vitro experimental models; peroxidation of linoleic acid and autooxidation of rat hepatic and renal microsomes by using thiobarbituric acid (TBA) for assay of free malondialdehyde production, and scavenging activities of free radicals by DPPH (α, α'-diphenyl-β-picrylhydrazyl). In DPPH method, acetone fraction extracted at 30℃ showed the highest free radical scavenging activities and acetone fractions extracted at 30℃ and 60℃ and ethanol fraction extracted at 30℃ showed stronger than BHT (butylated hydroxitoluene) although used ten-fold lower concentrations. In thiocyanate method used linoleic acid an inhibitory effects of all fractions showed higher than control treatment. TBA method used linoleic acid showed the highest antioxidative activity in acetone fraction extracted at 30℃ and 60℃. an inhibition activity against lipid peroxidation in hepatic microsomes of rats showed the highest at acetone faction extracted at acetone fraction among extracted fractions was shown to be the most potent antioxidative properties and this action was more potent in fractions extracted at 30℃ than those extracted at 60℃.

  • PDF

Differential Metabolism of the Pyrrolizidine Alkaloid, Senecionine, in Fischer 344 and Sprague-Dawley Rats

  • Chung, Woon-Gye;Donald R. Buhler
    • Archives of Pharmacal Research
    • /
    • v.27 no.5
    • /
    • pp.547-553
    • /
    • 2004
  • The pyrrolizidine alkaloids (PAs), contained in a number of traditional remedies in Africa and Asia, show wide variations in metabolism between animal species but little work has been done to investigate differences between animal strains. The metabolism of the PA senecionine (SN) in Fischer 344 (F344) rats has been studied in order to compare to that found in the previously investigated Sprague-Dawley (SO) rats (Drug Metab. Dispos. 17: 387, 1989). There was no difference in the formation of ($\pm$) 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP, bioactivation) by hepatic microsomes from either sex of SO and F344 rats. However, hepatic microsomes from male and female F344 rats had greater activity in the Noxidation (detoxication) of SN by 88% and 180%, respectively, when compared to that of male and female SD rats. Experiments conducted at various pH showed an optimum pH of 8.5, the optimal pH for flavin-containing monooxygenase (FMO), for SN N-oxidation by hepatic microsomes from F344 females. In F344 males, however, a bimodal pattern was obtained with activity peaks at pH 7.6 and 8.5 reflecting the possible involvement of both cytochrome P450 (CYP) and FMO. Use of specific inhibitors (SKF525A, 1-benzylimidazole and methimazole) showed that the N-oxide of SN was primarily produced by FMO in both sexes of F344 rats. In contrast, SN N-oxide formation is known to be catalyzed mainly by CYP2C11 rather than FMO in SD rats. This study, therefore, demonstrated that there were substantial differences in the formation of SN N-oxide by hepatic microsomes from F344 and SD rats and that this detoxification is catalyzed primarily by two different enzymes in the two rat strains. These findings suggest that significant variations in PA biotransformation can exist between different animal strains.