• Title/Summary/Keyword: Rat cortical cell

Search Result 81, Processing Time 0.033 seconds

Two cases of oval outflow and cyst formation in medulla of ovaries in gonadotropin-treated Sprague-Dawley rats (성선자극 Hormone을 주사한 Sprague-Dawley Rat 난소의 수질내의 난자유출 1증예 와 대 낭종형성 1증예)

  • Kwak, Soo-Dong;Kim, Chong-Sup
    • Korean Journal of Veterinary Pathology
    • /
    • v.1 no.1
    • /
    • pp.72-76
    • /
    • 1997
  • Histological investigation of the number of follicles following gonadotropin treatments for superovulation was carried out in mature Sprague-Dwaley(SD) rats. Routinely serial sections of paraffin-embedded ovaries were stained with hematoxylin-eosin and evaluated with light microscope. During the study unusual cases of microscopic alterations were observed in the medulla of ovaries in two rats. Case one: An ovum and its follicular fluid outflowed in medulla of ovary. The follicular fluid was densly proteinuous. Corona raiata consisted of 2-6 layers thick cells in the periphery of the ovum. While the cortical side of the follicular wall was intact with normal granulosa cell layer the meullary side of it was ruptured. Case two: A large cyst was present in medulla of ovary hilus. The cyst occupied the entire medulla displacing the ovarian archetecture and enclosed by connective tissue and smooth muscle wall.

  • PDF

Inhibition of Excitotoxic Neuronal Cell Death By Total Extracts From Oriental Medicines Used For Stroke Treatment (뇌졸중 치료 생약 추출물의 흥분성 신경독성 억제효과)

  • 조정숙;양재하;박창국;이희순;김영호
    • YAKHAK HOEJI
    • /
    • v.44 no.1
    • /
    • pp.29-35
    • /
    • 2000
  • The methanol extracts were prepared from 46 oriental medicines currently used for stroke treatment, and the effects were assessed on the excitotoxic neuronal cell death induced by L-glutamate(Glu) in primary cultured rat cortical neurons. The extracts from Angelicae gigantis Radix, Manitis Squama, Acori graminei Rhizoma, Uncariae Ramulus et Uncus, Alpiniae Fructus, Paeoniae Radix, and Cnidii Rhizoma inhibited the Glu-induced neurotoxicity with the IC$_50$ values of 95.2, 218.6, 263.3, 295.1, 297.9, 310.1, and 446.7 $\mu$g/ m$\ell$, respectively. The extracts from Arisaematis Rhizoma, Loranthi Ramulus, Anemarrhenae Rhizoma, Carthami Flos, Clematidis Radix, Bambusae Concretio Silicea, and Angelicae koreanae Radix also exhibited significant inhibition of the toxicity. In contrast, the extracts from Aconiti Tuber Araliae cordatae Radix, Curcumae Rhizoma, Leonuri Herba, Polygalae Radix, Salviae Radix, and Siegesbeckiae Herba increased the Glu-induced toxicity at the concentrations of 500 and 1000 $\mu$g/m$\ell$. Rest of the extracts evaluated in the present study showed minor or negligible inhibition. liken together the oriental medicines including Angelicae gigantis Radix, Muitis Squama, Acori graminei Rhizoma, Uncariae Ramulus et Uncus, and Alpiniae Fructus appear to exert pharmacological effects through the inhibition of excitotoxic neuronal cell death. Further studies are in progress to characterize active principles in these extracts.

  • PDF

Role of a Burr Hole and Calvarial Bone Marrow-Derived Stem Cells in the Ischemic Rat Brain : A Possible Mechanism for the Efficacy of Multiple Burr Hole Surgery in Moyamoya Disease

  • Nam, Taek-kyun;Park, Seung-won;Park, Yong-sook;Kwon, Jeong-taik;Min, Byung-kook;Hwang, Sung-nam
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.3
    • /
    • pp.167-174
    • /
    • 2015
  • Objective : This study investigates the role of a burr hole and calvarial bone marrow-derived stem cells (BMSCs) in a transient ischemic brain injury model in the rat and postulates a possible mechanism for the efficacy of multiple cranial burr hole (MCBH) surgery in moyamoya disease (MMD). Methods : Twenty Sprague-Dawley rats (250 g, male) were divided into four groups : normal control group (n=5), burr hole group (n=5), ischemia group (n=5), and ischemia+burr hole group (n=5). Focal ischemia was induced by the transient middle cerebral artery occlusion (MCAO). At one week after the ischemic injury, a 2 mm-sized cranial burr hole with small cortical incision was made on the ipsilateral (left) parietal area. Bromodeoxyuridine (BrdU, 50 mg/kg) was injected intraperitoneally, 2 times a day for 6 days after the burr hole trephination. At one week after the burr hole trephination, brains were harvested. Immunohistochemical stainings for BrdU, CD34, VEGF, and Doublecortin and Nestin were done. Results : In the ischemia+burr hole group, BrdU (+), CD34 (+), and Doublecortin (+) cells were found in the cortical incision site below the burr hole. A number of cells with Nestin (+) or VEGF (+) were found in the cerebral parenchyma around the cortical incision site. In the other groups, BrdU (+), CD34 (+), Doublecortin (+), and Nestin (+) cells were not detected in the corresponding area. These findings suggest that BrdU (+) and CD34 (+) cells are bone marrow-derived stem cells, which may be derived from the calvarial bone marrow through the burr hole. The existence of CD34 (+) and VEGF (+) cells indicates increased angiogenesis, while the existence of Doublecortin (+), Nestin (+) cells indicates increased neurogenesis. Conclusion : Based on these findings, the BMSCs through burr holes seem to play an important role for the therapeutic effect of the MCBH surgery in MMD.

Involvement of Endoplasmic Reticulum Stress Response in the Neuronal Differentiation

  • Cho, Yoon-Mi;Jang, Yoon-Seong;Jang, Young-Min;Seo, Jin-Young;Kim, Ho-Shik;Lee, Jeong-Hwa;Jeong, Seong-Whan;Kim, In-Kyung;Kwon, Oh-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.6
    • /
    • pp.239-246
    • /
    • 2007
  • Expressions of endoplasmic reticulum stress response (ERSR) genes were examined during the neuronal differentiation of rat fetal cortical precursor cells (rCPC) and rat pheochromocytoma PC12 cells. When rCPC were differentiated into neuronal cells for 7 days, early stem cell marker, nest in, expression was decreased from day 4, and neuronal markers such as neurofilament-L, -M and Tuj1 were increased after day 4. In this condition, expressions of BIP, ATF6, and phosphorylated PERK as well as their down stream signaling molecules such as CHOP, ATF4, XBP1, GADD34, Nrf2 and $p58^{IPK}$ were significantly increased, suggesting the induction of ERSR during neuronal differentiation of rCPC. ERSR was also induced during the differentiation of PC12 cells for 9 days with NGF. Neurofilament-L transcript was time-dependently increased. Both mRNA and protein levels of Tuj1 were increased after the induction, and the significant increase in NeuN was observed at day 9. Similar to the expression patterns of neuronal markers, BIP/GRP78 and CHOP mRNAs were highly increased at day 9, and ATF4 mRNA was also increased from day 7. These results strongly suggest the induction and possible role of ERSR in neuronal differentiation process. Further study to identify targets responsible for neuronal induction will be necessary.

Screeing of S9940 as an Inhibitor of Neurotransmitter Release from PC12 Cells (PC12 세포에서 신경전달물질 방출을 저해하는 물질 S9940 물질의 탐색)

  • Lee, Yun-Sik;Park, Kie-In
    • Toxicological Research
    • /
    • v.14 no.3
    • /
    • pp.341-348
    • /
    • 1998
  • We established an in vitro experimental system using the following procedure. We first introduced tritium-labelled norepinephrine ([3H]-NE)into PC12 cells. The [3H]-NE incorporated into PC12 cells were then stimulated by a high concentration (60 mM) of $K^+$ during 12 minutes. Then, we counted the amount of [3H]-NE release from PC12 cells with the scintillation counter. After screening fungal, Streptomyces or bacterial product using this experimental system, we obtained S9940 from Streptomyces spp. which inhibited [3H]-NE release from PC12 cells. S9940 also inhibits the release of ATP as a neurotransmitter of PC12 cells and rat cortical neurons. The inhibitory effect was seen even when the PC12 cells were treated with low $K^+$ buffer containing ionomycin $(1\muM)$ as an ionopore. This result suggests that the inhibitory action of S9940 on neurotransmitter release appeared after the influx of $Ca^{2+}$.

  • PDF

Neuroprotective Effects of Minocycline in Rat Brain Cortical Cell Culture Induced by Hypoxia (저산소 상태로 유도된 백서 뇌세포 배양에서 Minocycline의 뇌보호 효과)

  • Ha, Kyung A;Yang, Bum Seok;Kim, Jin Kyung;Kim, Hong Tae;Ha, Sung Jin;Lee, Jong Won;Chung, Hai Lee;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.11
    • /
    • pp.1101-1106
    • /
    • 2003
  • Purpose : In vivo, minocycline appears to be neuroprotective. Thus, the neuroprotective effects of minocycline were studied in a rat brain cortical cell culture induced by hypoxia. Methods : Cultured cells from the brains of Sprague-Dawley rats were divided into two sets of groups : normoxia groups treated with 5% $CO_2$ and hypoxia groups treated with 1% $CO_2$. After several days of incubation, the control groups were not treated with minocycline, while the sample groups were treated with either 1 or $10{\mu}g/mL$ of minocycline. The damaged cells were observed under a microscope, while apoptosis was detected using a TUNEL assay control-stained with DAPI. Results : Among the normoxia groups, the control and sample groups treated with 1 and $10{\mu}g/mL$ of minocycline were all statistically significantly different from each other. Meanwhile, among the hypoxia groups, although the control was significantly different from the sample groups, there was no statistically significant difference between the sample groups. When comparing the normoxia and hypoxia groups, there was a statistically significant difference between the control groups and sample groups treated with $1{\mu}g/mL$ of minocycline, yet no significant difference between the sample groups treated with $10{\mu}g/mL$ of minocycline. Conclusion : Minocycline was found to be neuroprotective in normoxia and hypoxia induced rat brain cortical cell cultures.

Localization and Developmental Changes of Dopamine $D_1$ and $D_2$ Receptor mRNAs in the Rat Brain

  • Kim, Myeong-Ok;Choi, Wan-Sung;Lee, Bong-Hee;Cho, Kyung-Jae;Seo, Sook-Jae;Kang, Sung-Goo;Kim, Kyung-Jin;Baik, Sang-Ho
    • Animal cells and systems
    • /
    • v.1 no.3
    • /
    • pp.497-505
    • /
    • 1997
  • Dopamine plays diverse roles in the fetal brain development and differentiation. However, the development of the dopaminergic neurons and its receptors has not been fully understood. In our studies, in situ hybridization and immunohistochemical methods were used to investigate the ontogeny of dopaminergic neurons and its receptor subtypes during the fetal development of the rat. In situ hybridization data showed that dopamine $D_1$ and $D_2$ receptor mRNAs were expressed in the ventricular and subventricular zones of ganglionic eminence, thalamus, hypothalamus, and cortical neuroepithelium on gestational day 13. Expression of dopamine $D_1$ and $D_2$ receptors during gestational days 17 and 19 reached the same or similar level of that in the adult brain. Expression of $D_1$ receptor mRNA preceded that of $D_2$ receptor mRNA in the early developmental stage, although this pattern was reversed with the sharp increase of $D_2$ receptor mRNA soon after. $D_2$ receptor mRNA was expressed in substantia nigra of mesencephalon of the fetal rat brain. However, $D_1$ receptor mRNA was not detected in substantia nigra. Our results indicate that dopamine might function in the fetal brain during the early gestational period.

  • PDF

The expression of MMP-1, -8, and -13 mRNA in the periodontal ligament of rats during tooth movement with cortical punching (백서의 치아이동 시 피질골 천공이 치주조직의 MMP-1, -8, -13 mRNA의 발현에 미치는 영향)

  • Gwack, Choon;Kim, Seong-Sik;Park, Soo-Byung;Son, Woo-Sung;Kim, Yong-Deok;Jun, Eun-Sook;Park, Mi-Hwa
    • The korean journal of orthodontics
    • /
    • v.38 no.3
    • /
    • pp.187-201
    • /
    • 2008
  • Objective: The aim of this study was to determine whether cortical punching stimulates the expression of matrix metalloproteinase-1, -8, and -13 in orthodontic tooth movement in rats. Methods: A total of 32 male sprague-dawley rats at 15 weeks old were divided into two groups of 16 rats each, to form the tooth movement with cortical punching (TMC) group and tooth movement only (TM) group. A total of 20 gm of orthodontic force was applied to rat incisors to cause experimental tooth movement. Cortical punching was performed on the palatal side near the central incisor with a 1.0 mm width microscrew in the TMC group. The duration of tooth movement was 1, 4, 7, and 14 days. Results: Measurements of the mRNA expression were selected as the means to determine the identification of expression of MMP-1, -8, and -13. In the TMC group, the expression of collagen type I was greater than that of the TM group from day 4 to day 14. Expression of TIMP-1 in the TM group was greater than that of the TMC group in the pressure side of PDL and alveolar bone cell at day 4. In the TMC group, TIMP-1 was expressed at the osteoclast, but not at the tooth surface of the TM group at day 14, Maximum induction of the mRNA of MMP-1 was observed on day 4 in the TMC group, but it was observed on day 7 in the TM group. MMP-8 mRNA of the TMC group was twice greater than that of the TM group at f days. In the TMC group, maximum induction of MMP-13 mRNA was observed on day 1. Conclusions: These findings suggested that cortical punching can stimulate remodeling of PDL and alveolar bone connective tissues during experimental orthodontic tooth movement in rats.

Diabetes disrupts osteometric and trabecular morphometric parameters in the Zucker Diabetic Sprague-Dawley rat femur

  • Robert Ndou;Vaughan Perry;Gcwalisile Frances Dlamini
    • Anatomy and Cell Biology
    • /
    • v.57 no.2
    • /
    • pp.294-304
    • /
    • 2024
  • Type 2 diabetes mellitus is increasingly becoming more prevalent worldwide together with hospital care costs from secondary complications such as bone fractures. Femoral fracture risk is higher in diabetes. Therefore, this study aimed to assess the osteometric and microarchitecture of the femur of Zucker Diabetic Sprague-Dawley (ZDSD) femur. Ten-week-old male rats (n=38) consisting of 16 control Sprague-Dawley (SD) and 22 ZDSD rats were used. The rats were terminated at 20 weeks and others at 28 weeks of age to assess age, diabetes duration effects and its severity. Bilateral femora were taken for osteometry, bone mass measurements and micro-focus X-ray computed tomography scanning to assess the trabecular number (TbN), thickness (TbTh), spaces (TbSp), bone tissue volume to total volume (BV/TV) and volume (BV). Diabetic rats had shorter (except for 20-weeks-old), lighter, narrower, and less robust bones than SD controls that wered more robust. Although cortical area was similar in all diabatic and control rats, medullary canal area was the largest in ZDSD rats. This means that the diabetic rats bones were short, light and hollow. Diabetic rats aged 20 weeks had reduced BV, BV/TV, TbN with more spacing (TbSp). In contrast, the 28 weeks old diabetic rats only showed reduced BV and TbN. Discriminant function analysis revealed, for the first time, that osteometric parameters and TbTh, TbN, and TbSp were affected by diabetes. This knowledge is valuable in the management of diabetic complications.

Immunostimulation of C6 Glioma Cells Induces Nitric Oxide-Dependent Cell Death in Serum-Free, Glucose-Deprived Condition

  • Shin, Chan-Young;Choi, Ji-Woong;Ryu, Jae-Ryun;Ryu, Jong-Hoon;Kim, Won-Ki;Kim, Hyong-Chun;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.140-146
    • /
    • 2000
  • Recently, we reported that immunostimulation of primary rat cortical astrocyte caused stimulation of glucose deprivation induced apoptotic cell death. To enhance the understanding of the mechanism of the potentiated cell death of clucose-deprived astrocyte by immunostimulation, we investigated the effect of immunostimulation on the glucose deprivation induced cell death of rat C6 glioma cells. Co-treatment of C6 glioma cells with lipopolysaccharide (LPS, $1\;{\mu}\textrm{g}/ml$) and interferon ${\gamma}(IFN{\gamma},\;100U/ml)$ is serum free condition caused marked elevationo f nitric oxide production ($>50\;{\mu}M$). In this condition, glucose deprivation caused significant release of lactate dehdrogenase (LDH) from C6 glioma cells while control cells did not show LDH release. To investigate whether elevated level of nitric oxide is responsible for the enhanced LDH release in glucose-deprived condition, C6 glioma cells were treated with 3-morphorinosydnonimine (SIN-1) and it was observed that SIN-1 caused increase in LDH release from glucose-deprived C6 glioma cells. Treatment of C6 glioma cells with $25\;{\mu}M$ of pyrrolidinedithiocarbamate (PDTC) which inhibit Nuclear factor kB (NF-kB) activation, caused complete inhibition of nitric oxide production. Treatment of C6 glioma cells with NO synthase inhibitors, $N^{G}$-nitro-L-arginine (NNA) or L-$N{\omega}$-nitro-L-arginine methyl ester (L-NAME), caused inhibition of nitric oxide production and also glucose deprivation induced cell death of cytokine-stimulated C6 glioma cells. In addition, diaminohydroxypyrimidine (DAHP, 5 mM) which inhibits the synthesis of tetrahydrobiopterine (BH4), one of essential cofactors for iNOS activity, caused complete inhibition of NO production from immunostimulated C6 glioma cells. The results from the present study suggest that immunostimulation causes potentiation of glucose deprivation induced death of C6 glioma cells which is mediated at least in part by the increased production of nitric oxide. The vulnerability of immunostimulated C6 glioma cells to hypoglycemic insults may implicate that the elevated level of cytokines in various ischemic and neurodegenerative diseases may play a role in their pathogenesis.

  • PDF