• Title/Summary/Keyword: Raspberry-PI

Search Result 401, Processing Time 0.027 seconds

Accident Prevention and Safety Management System for a Children School Bus (어린이 통학버스 사고 방지 및 안전 관리 시스템)

  • Kim, Hyeonju;Lee, Seungmin;Ham, Sojeong;Kim, Sunhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.446-452
    • /
    • 2020
  • As the use of children's school buses increases, accidents caused by the negligence of school bus drivers and ride carers have also increased significantly. To prevent such accidents, the government is coming up with various policies. We propose an accident prevention and safety management system for children's school buses. Through this system, bus drivers can easily check whether each child is seated and whether the seat belt is used, so it is possible to quickly respond to children's conditions while driving. With the ability to recognize faces by analyzing camera images, children can use a seat belt that is automatically adjusted to their height. It is therefore possible to prevent secondary injuries that may occur in the event of a traffic accident. In addition, a sleeping child-check system is provided to confirm that all children get off the bus, and a text service is provided to inform parents of their children's locations in real time. Based on Raspberry Pi, the system is implemented with cameras, pressure sensors, motors, Bluetooth modules, and so on. This proposed system was attached to a bus model to confirm that the series of functions work correctly.

The Arduino based Window farm Monitoring System (아두이노를 활용한 창문형 수경재배 모니터링 시스템)

  • Park, Young-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.563-569
    • /
    • 2018
  • This paper is on the implementation of a system for automatically monitoring window farm hydroponics based on Arduino (utilizing Arduino's open source code) emerging as the icon of the Fourth Industrial Revolution. A window farm, which means window-type hydroponics, is offered as an alternative to fulfill the desires of people who want to grow plants aside from the busy daily life in the city. The system proposed in this paper was developed to automatically monitor a window farm hydroponics cultivation environment using the Arduino UNO board, a four-charmel motor shield, temperature and humidity sensors, illumination sensors, and a real-time clock module. Modules for hydroponics have been developed in various forms, but power consumption is high because most of them use general power and motors. Since it is not a system that is monitored automatically, there is a disadvantage in that an administrator always has to manage its operational state. The system is equipped with a water supply that is most suitable for a plant growth environment by utilizing temperature, humidity, and light sensors, which function as Internet of Things sensors. In addition, the real-time clock module can be used to provide a more appropriate water supply. The system was implemented with sketch code in a Linux environment using Raspberry Pi 3 and Arduino UNO.

Air-conditioning and Heating Time Prediction Based on Artificial Neural Network and Its Application in IoT System (냉난방 시간을 예측하는 인공신경망의 구축 및 IoT 시스템에서의 활용)

  • Kim, Jun-soo;Lee, Ju-ik;Kim, Dongho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.347-350
    • /
    • 2018
  • In order for an IoT system to automatically make the house temperature pleasant for the user, the system needs to predict the optimal start-up time of air-conditioner or heater to get to the temperature that the user has set. Predicting the optimal start-up time is important because it prevents extra fee from the unnecessary operation of the air-conditioner and heater. This paper introduces an ANN(Artificial Neural Network) and an IoT system that predicts the cooling and heating time in households using air-conditioner and heater. Many variables such as house structure, house size, and external weather condition affect the cooling and heating. Out of the many variables, measurable variables such as house temperature, house humidity, outdoor temperature, outdoor humidity, wind speed, wind direction, and wind chill was used to create training data for constructing the model. After constructing the ANN model, an IoT system that uses the model was developed. The IoT system comprises of a main system powered by Raspberry Pi 3 and a mobile application powered by Android. The mobile's GPS sensor and an developed feature used to predict user's return.

  • PDF

Design and Implementation of Optimal Smart Home Control System (최적의 스마트 홈 제어 시스템 설계 및 구현)

  • Lee, Hyoung-Ro;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.135-141
    • /
    • 2018
  • In this paper, we describe design and implementation of optimal smart home control system. Recent developments in technologies such as sensors and communication have enabled the Internet of Things to control a wide range of objects, such as light bulbs, socket-outlet, or clothing. Many businesses rely on the launch of collaborative services between them. However, traditional IoT systems often support a single protocol, although data is transmitted across multiple protocols for end-to-end devices. In addition, depending on the manufacturer of the Internet of things, there is a dedicated application and it has a high degree of complexity in registering and controlling different IoT devices for the internet of things. ARIoT system, special marking points and edge extraction techniques are used to detect objects, but there are relatively low deviations depending on the sampling data. The proposed system implements an IoT gateway of object based on OneM2M to compensate for existing problems. It supports diverse protocols of end to end devices and supported them with a single application. In addition, devices were learned by using deep learning in the artificial intelligence field and improved object recognition of existing systems by inference and detection, reducing the deviation of recognition rates.

Development of Composite Sensing Technology Using Internet of Things (IoT) for LID Facility Management (LID 시설 관리를 위한 사물인터넷(IoT) 활용 복합 센싱 적용기술 개발)

  • Lee, Seungjae;Jeon, Minsu;Lee, Jungmin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.312-320
    • /
    • 2020
  • Various LIDs with natural water circulation function are applied to reduce urban environmental problems and environmental impact of development projects. However, excessive Infiltration and evaporation of LID facilities dry the LID internal soil, thus reducing plant and microbial activity and reducing environmental re duction ability. The purpose of this study was to develop a real-time measurement system with complex sensors to derive the management plan of LID facilities. The test of measurable sensors and Internet of Things (IoT) application was conducted in artificial wetlands shaped in acrylic boxes. The applied sensors were intended to be built at a low cost considering the distributed LID and were based on Arduino and Raspberry Pi, which are relatively inexpensive and commercialized. In addition, the goal was to develop complex sensor measurements to analyze the current state o f LID facilities and the effects of maintenance and abnormal weather conditions. Sensors are required to measure wind direction, wind speed, rainfall, carbon dioxide, Micro-dust, temperature and humidity, acidity, and location information in real time. Data collection devices, storage server programs, and operation programs for PC and mobile devices were developed to collect, transmit and check the results of measured data from applied sensors. The measurements obtained through each sensor are passed through the Wifi module to the management server and stored on the database server in real time. Analysis of the four-month measurement result values conducted in this study confirmed the stability and applicability of ICT technology application to LID facilities. Real-time measured values are found to be able to utilize big data to evaluate the functions of LID facilities and derive maintenance measures.

Design and Implementation of Cost-effecive Public Bicycle Sharing System based on IoT and Access Code Distribution (사물 인터넷과 액세스 코드 배포 기반의 경제적인 공공 자전거 공유 시스템의 설계 및 구현)

  • Bajracharya, Larsson;Jeong, Jongmun;Hwang, Mintae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1123-1132
    • /
    • 2018
  • In this paper, we design and implement a public bicycle sharing system based on smart phone application capable of distributing access codes via internet connection. When smartphone user uses the application to request a bicycle unlock code, server receives the request and sends an encrypted code, which is used to unlock the bicycle at the station and the same code is used to return the bicycle. The station's hardware prototypes were built on top of Internet devices such as raspberry pi, arduino, keypad, and motor driver, and smartphone application basically includes shared bike rental and return functionality. It also includes an additional feature of reservation for a certain time period. We tested the implemented system, and found that it is efficient because it shows the average of 3-4 seconds delay. The system can be implemented to manage multiple bikes with a single control box, and as the user can use a smartphone application, this makes the system more cost effective.

Internet-of-Things Based Approach for Monitoring Pharmaceutical Cold Chain (사물인터넷을 이용한 의약품 콜드체인 관리 시스템)

  • Chandra, Abel Avitesh;Back, Jong Sang;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.9
    • /
    • pp.828-840
    • /
    • 2014
  • There is a new evolution in technological advancement taking place called the Internet of Things (IoT). The IoT enables physical world objects in our surroundings to be connected to the Internet. For this idea to come to life, two architectures are required: the Sensing Entity in the environment which collects data and connects to the cloud and the Cloud Service that hosts the data. In particular, the combination of wireless sensor network for sensing and cloud computing for managing sensor data is becoming a popular intervention for the IoT era. The pharmaceutical cold chain requires controlled environmental conditions for the sensitive products in order for them to maintain their potency and fit for consumption. The monitoring of distribution process is the only assurance that a process has been successfully validated. The distribution process is so critical that anomaly at any point will result in the process being no longer valid. Taking the cold chain monitoring to IoT and using its benefits and power will result in better management and product handling in the cold chain. In this paper, Arduino based wireless sensor network for storage and logistics (land and sea) is presented and integrated with Xively cloud service to offer a real-time and innovative solution for pharmaceutical cold chain monitoring.

Implementation of CoMirror System with Video Call and Messaging Function between Smart Mirrors (스마트 미러간 화상 통화와 메시징 기능을 가진 CoMirror 시스템 구현)

  • Hwang, Kitae;Kim, Kyung-Mi;Kim, Yu-Jin;Park, Chae-Won;Yoo, Song-Yeon;Jung, Inhwan;Lee, Jae-Moon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.121-127
    • /
    • 2022
  • Smart mirror is an IoT device that attaches a display and an embedded computer to the mirror and provides various information to the useer along with the mirror function. This paper went beyond the form of dealing with smart mirrors only stand alone device the provide information to users, and constructed a network in which smart mirrors are connected, and proposed and implemented a CoMirror system that allows users to talk and share information with other smart mirror users. The CoMirror system has a structure in which several CoMirror clients are connected on one CoMirror server. The CoMirror client consists of Raspberry Pi, a mirror film, a touch pad, a display device, an web camera, etc. The server has functions such as face learning and recognition, user management, a relay role for exchanging messages between clients, and setting up for video call. Users can communicate with other CoMirror users via the server, such as text, image, and audio messages, as well as 1:1 video call.

Analysis Temporal Variations Marine Debris by using Raspberry Pi and YOLOv5 (라즈베리파이와 YOLOv5를 이용한 해양쓰레기 시계열 변화량 분석)

  • Bo-Ram, Kim;Mi-So, Park;Jea-Won, Kim;Ye-Been, Do;Se-Yun, Oh;Hong-Joo, Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1249-1258
    • /
    • 2022
  • Marine debris is defined as a substance that is intentionally or inadvertently left on the shore or is introduced or discharged into the ocean, which has or is likely to have a harmful effect on the marine environments. In this study, the detection of marine debris and the analysis of the amount of change on marine debris were performed using the object detection method for an efficient method of identifying the quantity of marine debris and analyzing the amount of change. The study area is Yuho Mongdol Beach in the northeastern part of Geoje Island, and the amount of change was analyzed through images collected at 15-minute intervals for 32 days from September 12 to October 14, 2022. Marine debris detection using YOLOv5x, a one-stage object detection model, derived the performance of plastic bottles mAP 0.869 and styrofoam buoys mAP 0.862. As a result, marine debris showed a large decrease at 8-day intervals, and it was found that the quantity of Styrofoam buoys was about three times larger and the range of change was also larger.

YOLO-based Traffic Signal Detection for Identifying the Violation of Motorbike Riders (YOLO 기반의 교통 신호등 인식을 통한 오토바이 운전자의 신호 위반 여부 확인)

  • Wahyutama, Aria Bisma;Hwang, Mintae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.141-143
    • /
    • 2022
  • This paper presented a new technology to identify traffic violations of motorbike riders by detecting the traffic signal using You Only Look Once (YOLO) object detection. The hardware module that is mounted on the front of the motorbike consists of Raspberry Pi with a camera to run the YOLO object detection, a GPS module to acquire the motorcycle's coordinate, and a LoRa communication module to send the data to a cloud DB. The main goal of the software is to determine whether a motorbike has violated a traffic signal. This paper proposes a function to recognize the red traffic signal colour with its movement inside the camera angle and determine that the traffic signal violation happens if the traffic signal is moving to the right direction (the rider turns left) or moving to the top direction (the riders goes straight). Furthermore, if a motorbike rider is violated the signal, the rider's personal information (name, mobile phone number, etc), the snapshot of the violation situation, rider's location, and date/time will be sent to a cloud DB. The violation information will be delivered to the driver's smartphone as a push notification and the local police station to be used for issuing violation tickets, which is expected to prevent motorbike riders from violating traffic signals.

  • PDF