• Title/Summary/Keyword: Rarefied gas flows

Search Result 28, Processing Time 0.022 seconds

A Study on the Performance Characteristics of a Disk-type Drag Pump (원판형 드래그펌프의 성능특성에 관한 연구)

  • Hwang, Young-Kyu;Heo, Joong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.643-648
    • /
    • 2001
  • The direct simulation Monte Carlo(DSMC) method is applied to investigate steady and unsteady flow fields of a single-stage disk-type drag pump. Two different kinds of pumps are considered: the first one is a rotor-rotor combination, and the second one is a rotor-stator combination. The pumping channels are cut on a rotor and stator. The rotor and stator have 10 Archimedes' spiral blades, respectively. In the present DSMC method, the variable hard sphere model is used as a molecular model, and the no time counter method is employed as a collision sampling technique. For simulation of diatomic gas flows, the Borgnakke-Larsen phenomenological model is adopted to redistribute the translational and internal energies. The DSMC results are in good agreement with the experimental data.

  • PDF

Generalized Hydrodynamic Computational Models for Diatomic Gas Flows (이원자 기체 유동 해석을 위한 일반유체역학 계산모델 개발)

  • Myong Rho-Shin;Cho Soo-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.111-115
    • /
    • 2001
  • The study of nonlinear gas transport in rarefied condition or associated with the microscale length of the geometry has emerged as an interesting topic in recent years. Along with the DSMC method, several fluid dynamic models that come under the general category of the moment method or the Chapman-Enskog method have been used for this type of problem. In the present study, on the basis of Eu's generalized hydrodynamics, a computational model for diatomic gases is proposed. The preliminary result indicates that the bulk viscosity plays a considerable role in fundamental flow problems such as the shock structure and shear flow. The general properties of the constitutive equations are obtained through a simple mathematical analysis. With an iterative computational algorithm of the constitutive equations, numerical solutions for the multi-dimensional problem can be obtained.

  • PDF

Numerical Prediction of the Flow Characteristics of a Micro Shock Tube

  • Arun Kumar, R.;Suryan, Abhilash;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.178-181
    • /
    • 2011
  • Recently, micro shock tube is being extensively used in various fields of engineering applications. The flow characteristics occurring in the micro shock tube may be significantly different from that of conventional macro shock tube due to very low Reynolds number and Knudsen number effects which are, in general, manifested in such flows of rarefied gas, solid-gas two-phase, etc. In these situations, Navier-Stokes equations cannot properly predict the micro shock tube flow. In the present study, a two-dimensional CFD method has been applied to simulate the micro shock tube, with slip velocity and temperature jump boundary conditions. The effects of wall thermal conditions on the unsteady flow in the micro shock tube were also investigated. The unsteady behaviors of shock wave and contact discontinuity were, in detail, analyzed. The results obtained show much more attenuation of shock wave, compared with macro-shock tubes.

  • PDF

Development of a Parallel Cell-Based DSMC Method Using Unstructured Meshes (비정렬격자에서 병렬화된 격자중심 직접모사 기법 개발)

  • Kim, Hyeong-Sun;Kim, Min-Gyu;Gwon, O-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.1-11
    • /
    • 2002
  • In the present study, a parallel DSCM technique based on a cell-based data structure is developed for the efficient simulation of rarefied gas flows especially od PC clusters. Dynamic load balancing is archieved by decomposing the computational domain into several sub-domains and accounting for the number of particles and the number cells of each domain. Mesh adaptation algorithm is also applied to improve the resolution of the solution and to reduce the grid dependency. It was demonstrated that accurate solutions can be obtained after several levels of mesh adapation starting from a coars initial grid. The method was applied to a two-dimensioanal supersonic leading-edge flow and the axi-symmetric Rothe nozzle flow to validate the efficiency of the present method. It was found that the present method is a very effective tool for the efficient simulation of rarefied gas flow on PC-based parallel machines.

An Experimental Study on the Pumping Performance of the Multi-stage Disk-type Drag Pump (다단 원판형 드래그펌프의 배기 성능에 관한 실험적 연구)

  • 권명근;허중식;황영규
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.79-85
    • /
    • 2003
  • Experimental investigations are performed for the rarefied gas flows in a multi-stage disk-type drag pump. The pump considered in the present study consists of grooved rotors and stators. The flow-meter method is adopted to calculate the pumping speed. Compression ratios and pumping speeds for the nitrogen gas are measured under the outlet pressure range of 0.13∼533 Pa. The present experimental data show the leak-limited value of the compression ratio in the molecular transition region. The rotational speed of the pump is 24,000rpm, and nitrogen is used as a test gas. The pumping characteristics of various drag pumps are performed. The inlet pressures are measured for various outlet pressures of the test pump. The ultimate pressures for zero throughput are measured for three-stage, two-stage and single-stage disk-type, respectively.

Parallel Hybrid Particle-Continuum (DSMC-NS) Flow Simulations Using 3-D Unstructured Mesh

  • Wu J.S.;Lian Y.Y.;Cheng G.;Chen Y.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.27-34
    • /
    • 2006
  • In this paper, a recently proposed parallel hybrid particle-continuum (DSMC-NS) scheme employing 3D unstructured grid for solving steady-state gas flows involving continuum and rarefied regions is described [1]. Substitution of a density-based NS solver to a pressure-based one that greatly enhances the capability of the proposed hybrid scheme and several practical experiences of implementation learned from the development and verifications are highlighted. At the end, we present some simulation results of a realistic RCS nozzle plume, which is considered very challenging using either a continuum or particle solver alone, to demonstrate the capability of the proposed hybrid DSMC-NS method.

  • PDF

Numerical Investigation of Flows around Space Launch Vehicles at Mid-High Altitudes (중/고고도 영역에서의 우주발사체 주위 유동에 대한 수치적 연구)

  • Choi, Young Jae;Choi, Jae Hoon;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • In the present study, to investigate flows around space launch vehicles at mid-high altitudes efficiently, a three-dimensional unstructured mesh Navier-Stokes solver employing a Maxwell slip boundary condition was developed. Validation of the present flow solver was made for a blunted cone-tip configuration by comparing the results with those of the DSMC simulation and experiment. It was found that the present flow solver works well by capturing the velocity slip and the temperature jump on the solid surface more efficiently than the DSMC simulation. Flow simulations of space launch vehicles were conducted by using the flow solver. Mach number of 6 at the mid-high altitude around 86km was considered, and the flow phenomena at the mid-high altitude was discussed.

DSMC Calculation of the Hypersonic Free Stream and the Side Jet Flow Using Unstructured Meshes (비정렬 격자 직접모사법을 이용한 희박 유동과 측면 제트의 상호 작용에 관한 연구)

  • Kim M. G.;Kwon O. J.;Ahn C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.126-131
    • /
    • 2004
  • The interaction between the hypersonic free stream and the side jet flow at high altitudes is investigated by direct simulation Monte Carlo(DSMC) method. Since there is a great difference in density between the free stream and the side jet flow, the weighting factor technique which could control the number of simulation particles, is applied to calculate these two flows simultaneously. Chemical reactions are not considered in the calculation. For validation, the corner flow passing between a pair of plates that are perpendicularly attached is solved. The side jet flow is then injected into this comer flow and solution is found for the merged flow. Results are compared with the experiments. For a more realistic rocket model, the flow past a blunted cone cylinder shape is solved. The leeward or windward jet injection is merged with this flow. The effect on the rocket surface is observed at various flow angles. The lambda effect and the wake structure are found like low attitudes. High interaction between the free stream and the side jet flow is observed when the side jet is injected in the windward direction.

  • PDF