• Title/Summary/Keyword: Rare earth metal

Search Result 184, Processing Time 0.029 seconds

Trends and Implications of International Standardization for Rare Earths (희토류 관련 국제표준 동향 및 시사점)

  • Abbas, Sardar Farhat;lee, Sang-Hyun;Lee, Bin;Kim, Bum-Sung;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.165-169
    • /
    • 2018
  • Rare earth elements (REEs) are considered to be vital to modern industry due to their important roles in applications such as permanent magnets, automobile production, displays, and many more. The imbalance between demand and supply of REEs can be solved by recycling processes. Regarding the needs of industry and society, the International Organization for Standardization, Technical Committee 298 (ISO/TC298) Rare Earths has been recently launched for developing international standards on rare earth elements. In accordance with the suggestion of its constituents, it is tentatively working to develop the appropriate standards under five working groups (WG) on terms and definitions (WG1), element recycling (WG2), environmental stewardship (WG3), packaging, labelling, marking, transport, and storage (WG4), and testing analysis (WG5). The scope and structure of ISO/TC298 on the topic of rare earths is discussed in this document.

Terpolymerization of Carbon Monoxide, Styrene, and 4-Methylstyrene Catalyzed by Palladium-Rare Earth Catalyst

  • Tian, Jing;Guo, Jin-Tang;Li, Peng;Zhang, Xin;Chen, Zhi-Kun;Zhao, Hai-Yang
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.563-567
    • /
    • 2009
  • In order to improve the thermomechanical performance of polyketone, a third monomer (4-methylstyrene) was added to the copolymerization system. The terpolymer of CO, styrene, and 4-methylstyrene was synthesized in the presence of multi component catalysts containing palladium acetate and rare earth metal phosphonates. The products were characterized by infrared spectroscopy (IR), and nuclear magnetic resonance spectroscopy (NMR). The effects of the different components, including the third monomer, palladium acetate, 2,2'-bipyridyl, rare earth phosphonate, p-toluene-sulphonic acid, and p-benzoquinone, were also studied. The highest catalytic activity of 965.51 g/(gPd h) was obtained with a catalyst containing palladium acetate and rare earth phosphonate.

Catalytic Activity of Commercial Metal Catalysts on the Combustion of Low-concentration Methane (저농도 메탄 연소에서 상용 금속촉매의 활성)

  • Lee Kyong-Hwan;Park Jae-Hyun;Song Kwang-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.625-630
    • /
    • 2005
  • This study was focused on the catalytic activity for the combustion of low-concentration methane using various commerical catalysts (six transition metal catalysts in Russia and one rare earth metal (Honeycomb) catalyst in Korea). Catalytic activity was strongly influenced by the type and loading content of metal supported in catalyst. Catalytic performance showed the highest activity in Honeycomb catalyst including rare earth metal, which was the most expensive catalyst, while the next was the catalyst supported Cu with high content (AOK-78-52) and also that supported Cr and Co (AOK-78-56). However, both AOK-78-52 and AOK-78-56 catalysts that were very cheap had lower activation energy than Honeycomb catalyst. In the economical field, both AOK-78-52 and AOK-78-56 catalysts with transition metals showed a good alternative catalyst on the combustion of methane.

A Study on the Preparation of Rare Earth Oxide Powder for Rare Earth Precipitates Recovered from Spent Ni-MH Batteries (폐니켈수소전지로부터 회수된 희토류 침전물의 희토류 산화물 분말 제조에 대한 연구)

  • Kim, Dae-Weon;Ahn, Nak-Kyoon;Shim, Hyun-Woo;Park, Kyung-Soo;Choi, Hee-Lack
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.213-219
    • /
    • 2018
  • We report a method for preparing rare earth oxides ($Re_xO_y$) from the recycling process for spent Ni-metal hydride (Ni-MH) batteries. This process first involves a leaching of spent Ni-MH powders with sulfuric acid at $90^{\circ}C$, resulting in rare earth precipitates (i.e., $NaRE(SO_4)_2{\cdot}H_2O$, RE = La, Ce, Nd), which are converted into rare earth oxides via two different approaches: i) simple heat treatment in air, and ii) metathesis reaction with NaOH at $70^{\circ}C$. Not only the morphological features but also the crystallographic structures of all products are systematically investigated using field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD); their thermal behaviors are also analyzed. In particular, XRD results show that some of the rare earth precipitates are converted into oxide form (such as $La_2O_3$, $Ce_2O_3$, and $Nd_2O_3$) with heat treatment at $1200^{\circ}C$; however, secondary peaks are also observed. On the other hand, rare earth oxides, RExOy can be successfully obtained after metathesis of rare earth precipitates, followed by heat treatment at $1000^{\circ}C$ in air, along with a change of crystallographic structures, i.e., $NaRE(SO_4)_2{\cdot}H_2O{\rightarrow}RE(OH)_3{\rightarrow}RE_xO_y$.

A Study on the Recovery of Rare Earth Minerals from Ja-Eun Iron Ore. (자은철광석으로부터 희토류광물 회수에 관한 연구)

  • Jeon, Ho-Seok;Kim, Joon-soo;Moon, Young-bae;Lee, Jae-Jang
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.257-261
    • /
    • 2001
  • The separation of rare earths minerals is very difficult because of their similar chemical properties. The rare earth minerals are used as the mixed rare earth minerals or the misch metal without separation to each element. However, the high purity rare earths are recently produced commercially to each element so they there are used as the materials for high tech. Based on the characterization results for the raw minerals, we have developed a combined process containing gravity seperation, magnetic seperation and flotation. The result obtained from this study is monazite concentration of TREO grade 69.11% and Recovery 56.02%.

  • PDF

Progresses on the Optimal Processing and Properties of Highly Porous Rare Earth Silicate Thermal Insulators

  • Wu, Zhen;Sun, Luchao;Wang, Jingyang
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.527-555
    • /
    • 2018
  • High-temperature thermal insulation materials challenge extensive oxide candidates such as porus $SiO_2$, $Al_2O_3$, yttria-stabilized zirconia, and mullite, due to the needs of good mechanical, thermal, and chemical reliabilities at high temperatures simultaneously. Recently, porous rare earth (RE) silicates have been revealed to be excellent thermal insulators in harsh environments. These materials display attractive properties, including high porosity, moderately high compressive strength, low processing shrinkage (near-net-shaping), and very low thermal conductivity. The current critical challenge is to balance the excellent thermal insulation property (extremely high porosity) with their good mechanical properties, especially at high temperatures. Herein, we review the recent developments in processing techniques to achieve extremely high porosity and multiscale strengthening strategy, including solid solution strengthening and fiber reinforcement methods, for enhancing the mechanical properties of porous RE silicate ceramics. Highly porous RE silicates are highlighted as emerging high-temperature thermal insulators for extreme environments.

Separation of Light Rare Earth Elements by Solvent Extraction with a Mixture of Cationic and Tertiary Amine (양이온 추출제와 아민의 혼합추출제에 의한 경희토류금속의 분리)

  • Lee, Man-Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.3-10
    • /
    • 2017
  • Rare earth elements with high purity are demanded for the manufacture of advanced materials. Light rare earth elements are contained in domestic monazite and Ni-MH batteries. In this paper, solvent extraction to separate the light rare earth elements from hydrochloric acid leaching solutions of these resources was discussed. A mixture of cationic and tertiary amine shows synergistic effect on the extraction of LREEs and the extent of pH decrease during extraction is reduced. The effect of solution pH on the extraction and synergism was reviewed. Acquisition of the operation data with mixer-settler on the separation of LREEs by this mixture is necessary to develop a process.

Synthesis and Characterization of Novel Rare-earth Oxides Precursors

  • Lee, Euy Jin;Park, Bo Keun;Chung, Taek-Mo;Kim, Chang Gyoun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.366.1-366.1
    • /
    • 2014
  • The rare-earth oxides M2O3 (M=La, Pr, Gd) are good insulators due to their large band gap (3.9eV for Pr2O3, 5.6eV for Gd2O3), they have high dielectric constants (Gd2O3 K=16, La2O3 K=27, Pr2O3 K=26-30) and, compared to ZrO2 and HfO2, they have higher thermodynamic stability on silicon making them very attractive materials for high-K dielectric applications. Another attractive feature of some rare-earth oxides is their relatively close lattice match to that of silicon, offering the possibility of epitaxial growth and eliminating problems related to grain boundaries in polycrystalline films. Metal-organic chemical vapor deposition (MOCVD) has been preferred to PVD methods because of the possibility of large area deposition, good composition control and excellent conformal step coverage. Herein we report on the synthesis of rare-earth oxide complexes with designed alkoxide and aminoalkoxide ligand. These novel complexes have been characterized by means of FT-IR, elemental analysis, and thermogravimetric analysis (TGA).

  • PDF

Novel process of rare-earth free magnet and thermochemical route for the fabrication of permanent magnet

  • Choi, Chul-Jin
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.12a
    • /
    • pp.89-89
    • /
    • 2013
  • Rare earth (RE) - transition metal based high energy density magnets are of immense significance in various engineering applications. $Nd_2Fe_{14}B$ magnets possess the highest energy product and are widely used in whole industries. Simultaneously, composite alloys that are cheap, cost effective and strong commercially available have drawn great attention, because rare-earth metals are costly, less abundant and strategic shortage. We designed rare-earth free alloys and fabrication process and developed novel route to prepare $Nd_2Fe_{14}B$ powders by wet process employing spray drying and reduction-diffusion (R-D) without the use of high purity metals as raw material. MnAl-base permanent magnetic powders are potentially important material for rare-earth free magnets. We have prepared the nano-sized MnAl powders by plasma arc discharge and micron-sized MnAl powders by gas atomization. They showed good magnetic property, compared with that from conventional processes. $Nd_2Fe_{14}B$ powders with high coercivity of more than 10 kOe were successfully synthesized by adjusting R-D step, followed by precise washing system. It is considered that this process can be applied for the recycling of RE-elements extracted from ewaste including motors.

  • PDF

Adsorption of Rare Earth Metal Ion on N-Phenylaza-15-Crown-5 Synthetic Resin with Styrene Hazardous Material

  • Kim, Se-Bong;Kim, Joon-Tae
    • Journal of Integrative Natural Science
    • /
    • v.7 no.2
    • /
    • pp.130-137
    • /
    • 2014
  • Resins were synthesized by mixing N-phenylaza-15-crown-5 macrocyclic ligand attached to styrene (2th petroleum in 4th class hazardous materials) divinylbenzene (DVB) copolymer with crosslink of 1%, 2%, 6%, and 12% by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, thermo gravimetric analysis (TGA), surface area, and IR-spectroscopy. The effects of pH, equilibrium arrival time, dielectric constant of solvent and crosslink on adsorption of metal ions by the synthetic resin adsorbent were investigated. The metal ions were showed fast adsorption on the resins above pH 4. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium (VI) > zinc (II) > europium (III) ions. The uranium ion adsorbed in the order of 1%, 2%, 6%, and 12% crosslink resin and adsorption of resin decreased in proportion to the order of dielectric constant of solvents.