• 제목/요약/키워드: Rare earth metal

검색결과 184건 처리시간 0.029초

천연 및 가교 키토산에 의한 희토류 원소의 흡착과 회수에 관한 연구 (A Study on the Adsorption of Rare Earth Elememts by Raw and Crosslinked Chitosan)

  • 조성일;최종문;김영상;이석근
    • 분석과학
    • /
    • 제17권2호
    • /
    • pp.108-116
    • /
    • 2004
  • 본 연구에서는 천연 키토산과 glutaraldehyde을 이용하여 가교한 가교 키토산을 사용하여 희토류 금속과의 흡착특성을 조사하였다. 최대 흡착량을 나타내는 최적 pH 영역은 $Nd^{3+}$$Tm^{3+}$ 금속이온의 경우, 천연 및 가교 키토산에 대해 4.5~5.5 영역이었으며, $La^{3+}$$Ce^{3+}$ 금속이온의 경우, 가교 키토산은 pH 4. 0~5.5 영역, 천연 키토산은 pH 2.0에서 최대 흡착량을 보였다. 단일상 (pH 4.0)에서 희토류 금속의 최대 흡착량은 $Er^{3+}$ > $Gd^{3+}$ > $Yb^{3+}$ > $Nd^{3+}$ > $Lu^{3+}$ > $Eu^{3+}$ > $Tm^{3+}$ > $Ho^{3+}$ > $Dy^{3+}$ > $La^{3+}$ > $Ce^{3+}$ > $Y^{3+}$ > $Pr^{3+}$ 같은 순서로, 혼합상에서는 $Lu^{3+}$ > $Yb^{3+}$ > $Tm^{3+}$ > $Dy^{3+}$ > $Ho^{3+}$ > $Er^{3+}$ > $Eu^{3+}$ > $Gd^{3+}$ > $Nd^{3+}$ > $Y^{3+}$ > $La^{3+}=Ce^{3+}=Pr^{3+}$의 순서로 경쟁적 흡착반응을 나타내었다. 혼합상에서 희토류 금속의 경쟁반응은 원자번호가 증가할수록, 그리고 이온반지름이 작을수록 높은 흡착량을 나타내었다. 최대 흡착량에 도달하는데 걸리는 흡착평형시간은 이전 금속이온과의 연구에서와 상이하게 5시간 이상 소요되었다. 키토산에 대한 희토류 금속이온의 회수율은 $Nd^{3+}$ 이온의 경우, 83~95%이고, $Tm^{3+}$ 이온의 경우, 90~106%을 나타내었다.

BaR0.5+xTa0.5-xO3-δ (R=희토류 금속)계 Proton 전도체 특성에 미치는 수분의 영향 (Humidity Effect on the Characteristics of the Proton Conductor Based on the BaR0.5+xTa0.5-xO3-δ (R=Rare Earth) System)

  • 최순목;서원선;정성민;김신;이홍림
    • 한국세라믹학회지
    • /
    • 제45권5호
    • /
    • pp.290-296
    • /
    • 2008
  • $AB'_{0.5}B"_{0.5}O_3$ type complex perovskite structures which have been reported as proton conductors over $600^{\circ}C$ were studied. The $AB'_{0.5}B"_{0.5}O_3$ type complex perovskite structure is known to be more easily synthesized and has better stability than normal $ABO_3$ perovskite structure. And it is stable at about $800^{\circ}C$ in the $CO_2$ atmosphere, whereas the $BaCeO_3$ perovskite is easily decomposed into carbonate. In addition, this $AB'_{0.5}B"_{0.5}O_3$ type complex perovskite structure could simply produce oxygen vacancies within their structure not by introducing additional doping oxides but by just controling the molar ratio of $B'^{+3}$ and $B"^{+5}$ metal ions in the B site. Hence it is easy to design the structure which shows highly sensitive electrical conductivity to humidity. In this study, the single phase boundary of $BaR_{0.5+x}Ta_{0.5-x}O_{3-{\delta}}$(R = rare earth) complex perovskite structures and it's phase stability were investigated with changes in composition, x. And the humidity dependance of electrical conductivity at different $P_{H2O}$ conditions was investigated.

Hyper Duplex STS 중 Ce 첨가 시 비금속개재물 생성거동 (The Formation Behavior of Non-metallic Inclusion in the Ce-added Hyper Duplex STS)

  • 홍성훈;장필용;박영민;변선민;김광태;유병돈
    • 소성∙가공
    • /
    • 제19권5호
    • /
    • pp.311-319
    • /
    • 2010
  • Rare earth metal Ce has a relatively low melting point and high specific gravity. Because of its significantly high affinity to oxygen, nitrogen and sulfur, it is highly usable as a steel refining agent. However, because Ce compound has relatively high specific gravity, it is difficult to be separated from molten steel through floatation, and it degrades the purity of molten steel, or may clog the nozzle in continuous casting. Such problem may be solved by using an appropriate deoxidation agent together with Ce and settling molten steel sufficiently after refining. Thus a fundamental study in the formation behavior of non-metallic inclusion in Ce added Hyper Duplex STS melts was investigated. The addition amount of Ce, melt temperature were considered as experimental variables. A main non-metallic inclusion in mother alloy is 51(wt%MnO) - 27.6(wt%SiO$_2$)- 10.9(wt%$Cr_2O_3$). Non-metallic inclusion was dramatically decreased and the particle size was fined as the amount of Ce increased. Moreover (%MnO) and (%SiO$_2$) of non-metallic inclusion were decreased. But (%$Al_2O_3$)were relatively increased. The number of non-metallic inclusion were decreased and the large particle size were increased by increasing the temperature of molten steel.

Structural and temperature coefficient of resistance characteristics of colossal magnetoresistance Mn oxides prepared by RF sputtering

  • Choi, Sun-Gyu;Ha, Tae-Jung;Reddy, A.Sivasankar;Yu, Byoung-Gon;Park, Hyung-Ho
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.361-361
    • /
    • 2007
  • A lot of efforts have been paid to develop infrared imaging systems in last decades. Bolometer has a wide range of applications from military to commercial, such as military night vision, medical imaging system and so on. Bolometer is a resistive sensor that detects temperature changes through resistance change. To improve detecting ability, bolometer should have a good resistive film which has high temperature coefficient of resistance (TCR) value. Colossal magnetoresistance (CMR) $L_{1-x}A_xMnO_3$ (where L and A are trivalent rare-earth ions and divalent alkaline earth ions, respectively.) are received attention to apply bolometer resistive film because it has a high TCR property which was discovered in the metal to semiconductor phase transition temperature region. In this work, CMR films were deposited on various substrates in relative low substrate temperature by RF magnetron sputtering. The influence of deposition parameters such as substrate temperature, gas partial pressure, and so on have been studied. The structural and TCR properties of the films were also investigated for applying to microbolometer.

  • PDF

일본의 원소전략 프로젝트 (Strategic Elements Project of Japan)

  • 최판규
    • 한국자기학회지
    • /
    • 제24권6호
    • /
    • pp.197-201
    • /
    • 2014
  • 전세계적으로 희소금속의 중요성이 높아지고 있는 가운데 일본은 2004년부터 원소전략 개념을 도입하고 2007년부터는 원소전략사업을 추진하게 되었다. 일본의 문부과학성의 "원소전략 프로젝트"는 물질과 재료를 구성하고 그 기능과 특성을 결정하는 원소의 역할과 성격을 연구하고, 물질과 재료의 기능과 특성의 발현기구를 명확히 규명함으로써, 희소원소나 유해원소를 사용하지 않는 고기능을 가진 물질과 재료를 개발하는 것을 목적으로 하고 있다. 특히, 2010년 9월 일본명 센카쿠렛도(중국명 댜오위다오)에서 중국어선과 일본순시선이 충돌하는 사건이 일어나서, 중국어선을 나포하여 영토문제, 외교, 경제 갈등으로까지 확산되었다. 일본이 국내법을 적용하여 사법처리 하려하자, 중국이 꺼낸 카드가 희소금속의 일본수출금지였다. 이 때부터 위기감을 느낀 일본은 더욱더 원소전략 프로젝트에 박차를 가하기 시작했다. 일본정부는 풍부하고 무해한 원소에 의한 대체재료의 연구, 전략원소의 유효기능의 고활용, 원소유효이용을 위한 실용재료설계기술 등 3가지 제안으로 연구테마를 2012년 2월에 공모하여, 2012년 6월 "원소전략 프로젝트" 연구영역과 연구거점 4군데를 채택하였다. 1. Dy, Nd 등을 대체할 목적의 자성재료영역. 2. Pt, Rh/Li, Co 등을 대체할 목적의 촉매/전지재료영역. 3. In, Ta 등을 대체할 목적의 전자재료영역. 4. Nb, Mo 등을 대체할 목적의 구조재료영역. 본 논문에서는 원소전략의 4개의 영역 중에서 자성재료영역의 현재까지의 연구동향에 대해서 기술하고자 한다.

PLD법에 의한 혼합된 희토류계$(Nd_{1/3}Eu_{1/3}Gd_{1/3})Ba_2Cu_3O_{7-x}$ 고온 초전도 박막 (Mixed rare earth $(Nd_{1/3}Eu_{1/3}Gd_{1/3})Ba_2Cu_3O_{7-d}$ thin films by PLD)

  • 고락길;배성환;정명진;장세훈;송규정;박찬;손명환;강석일;오상수;하동우;하홍수;김호섭;김영철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.3-3
    • /
    • 2009
  • In order to investigate the possibility of using mixed rare earth $(Nd_{1/3}Eu_{1/3}Gd_{1/3})Ba_2Cu_3O_{7-x}$ (NEG123) as the superconducting layer of the HTS coated conductor, the NEG123 thin film was deposited epitaxialy on LAO(100) single crystal and IBAD_YSZ metal templates by pulsed laser deposition. Systematic studies were carried out to investigate the influences of deposition parameters of PLD on the micro structure, texture and superconducting properties of NEG-123 coated conductor. Deposition at oxygen partial pressure of 600 mTorr was needed to routinely obtain high quality NEG123 films with $J_c$'s (77K) over 2 MA/$cm^2$ and Tc's over 90K (${\Delta}T{\sim}2\;K$). We verified from magnetization study that the NEG123 has an improved in-field Jc as the field increases at temperatures between 10 K and 77 K compared with Gd123. The $J_c$ (77K, self field) and the value of onset $T_c$ of NEG123 thin film on LAO substrate was $4.0MA/cm^2$ and 92K, respectively. This is the first report, to the best of our knowledge, of coated conductors with NEG123 film as the superconducting layer which have Ic and Jc over 40 A/cm-width and 1.6 MA/$cm^2$ at 77K, self field. This study shows the possibility of using NEG123 film as the superconducting layer of the HTS coated conductor which can be used in high magnetic field power electric devices.

  • PDF

Al85Ce5Ni10 비정질 리본의 결정화 거동에 관한 연구 (A Study on the Crystallization Behavior of Al85Ce5Ni10 Amorphous Ribbon)

  • 문종태;조우민;신봉문;이용호
    • 열처리공학회지
    • /
    • 제8권3호
    • /
    • pp.236-243
    • /
    • 1995
  • Since amorphous alloys have been known to have better mechanical and chemical properties than crystalline alloys of the same composition, a great number of studies on the formation of Al-based amorphous alloys have been carried out actively. However, little has been obtained about the effect of Rare-Earth metal and Transition metal addition on amorphous phase formed by melt spinning method. This study included fabrication of amorphous alloy $Al_{85}Ce_5Ni_{10}$ by melt spinning methods and DTA, XRD, TEM analysis to determine crystalization behavoir. Annealing treatments were carried out in Ar atmosphere under isothermal and nonisothermal conditions. The diffraction pattern of non-heated ribbons showed broad form characteristic of glass metallic alloy. The crystallization of amorphous $Al_{85}Ce_5Ni_{10}$ takes place eutedtoidly by homogeneous formation of Al and MS-1, followed by precipitation of the $Al_{11}Ce_3$ and later $MS-1{\rightarrow}Al_3Ni$ transformation.

  • PDF

Facile Synthesis of SrWO4:Eu3+ Phosphors

  • Bharat, L. Krishna;Yu, Jae Su
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.643-643
    • /
    • 2013
  • Recently, synthesis of low-dimensional nanostructures is gaining more importance due to their structural properties and growing potential applications. On the other hand, luminescent materials doped with rare earth ions have drawn immense attention. The commercial phosphors are based on many host materials. Among them, tungstates are being currently investigated by many research groups owing to a wide range of applications. Tungstates are formed by different metal cations (e.g., SrWO4, Na2WO4, NiWO4, Cr2WO6, and ZrW2O8) and their structure depends on the size of the metal cation. Tungstates with large bivalent cations (${\gg}0.1\;nm$) have the scheelite structure and the wolframite structure with smaller ions (<0.1 nm). Strontium tungstate has the scheelite structure which is tetragonal with space group I41/a. The luminescent properties of the tungstate have been extensively explored in application fields such as sensors, detectors, lasers, photoluminiscent devices, photo catalysts, etc. In this work, we synthesized SrWO4 phosphors with different Eu3+ concentrations by using a facile route. The morphology was analyzed by using a field-emission scanning electron microscope, which exhibits the spherical shape. Transmission electron microscope image revealed the spheres composed of nanoparticles. X-ray diffraction patterns confirmed their tetragonal shape. The photoluminescence excitation and emission spectra were analyzed by varying the Eu3+ concentration, which shows a dominant red emission.

  • PDF

Discovery of Giant Magnetostriction in Amorphous RFe$_2$B (R = Sm, Tb) Alloys

  • Kim, Jai-Young
    • Journal of Magnetics
    • /
    • 제1권2호
    • /
    • pp.64-68
    • /
    • 1996
  • Compared with the conventional magnetostriction in Ni alloys which are in the order of several tens ppm (Parts Per Million =10-6), RFe$_2$(R = rare earth element) Laves Phase intermetallic compounds show large saturation magnetostriction in the range of a few thousands ppm. However, the large external magnetic field necessary to obtain saturatio magnetostriction has due to large magnetocrystalline anisotropy energy restrained the applicationof magnetostriction materials in RFe$_2$intermetallic compounds. As a result of its solution, the largest published value of effective giant magnetostriction in a low external magnetic field (less than a few hundred Oe) is reported in this paper by means of amorphisation of RFe$_2$intermetallic compounds with the addition of boron, as a half metal. For the amorphous (SmFe$_2$)0.97 B0.03 alloys, the effective magnetostriction of -545 and -610 $\times$ 10-6 is obtained at 400 and 1,000 Ie, respectively. Moreover, the effective magnetostriction of 590 and 630$\times$10-6 in the amorphous (TbFe$_2$)0.98 B0.02 alloys is also found at 400 and 1,000 Oe, respectively. This result will provide a clue to understanding the effect of half metal on anomalous increase of the effective giant magnetostriction and attract the great attention for magnetostriction applications.

  • PDF

수소저장합금의 마이크로캡슐화 (Microencapsulation of Hydrogen Storage Alloys)

  • 김대룡;김용철;금동욱
    • 한국수소및신에너지학회논문집
    • /
    • 제1권1호
    • /
    • pp.31-39
    • /
    • 1989
  • Although it has been well known that many metal hydrides are promising to use for hydrogen storage and other applications, some difficulties still remain. Metal hydrides, particularly in powder form, have very poor thermal conductivity. The hydrogen storage alloys degrade intrinsically or extrinsically during repeated hydriding and dehydriding. Elimination of these problems is very important in the practical applications. In order to prevent degradation and to improve the thermal conductivity, the hydrogen storage characteristics of rare-earth type alloy encapsulated with Cu or Ni by means of chemical plating have been investigated. No changes has occured in hydrogen absorption capacity and equilibrium pressure even though the alloy powder is microencapsulated. The first hydrogen absorption rate of the alloy encapsulated increased considerably comparing to uncapsulated sample. In the case of encapsulating the fine powder ($>10{\mu}m$) and subsequent compacting by $8ton/cm^2$, shape of compact is maintained regardless of hydriding and dehydriding. The degree of degradation of the alloy caused by impurity gas of CO or $O_2$ was decreased prominently by encapsulation.

  • PDF