• Title/Summary/Keyword: Rare Metal

Search Result 356, Processing Time 0.031 seconds

Studies on the New Analytical Methods for Separation and Recovery of Rare Earth Metals (I) : Adsorption Characteristics of U(VI) Ion by New Synthetic Resins with Macrocyclic Compounds (희토류금속 분리 및 회수를 위한 분석화학적 연구 (제1보) : 우라늄(VI)의 분리회수를 위한 선택이온교환수지 합성과 우라늄(VI) 금속이온의 흡착특성)

  • Jung Oh Jin;Hak Jin Jung;Joon Tea Kim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.358-370
    • /
    • 1988
  • Several new ion exchange resins have been synthesized from chloromethyl styrene-1,4-divinylbenzene(DVB) with 1%, 2%, 4%, and 10%-crosslinking and macrocyclic ligands of cryptand type by interpolymerization method. The adsorption characteristics and the pH, time, solvents and concentration dependence of the adsorption of metal ions by this resin were studied. The correlation between the separation characteristics of uranium, rare earths and transition metal on the resins and the stability constants of complexes with macrocyclic ligands have been examined. The resins were very stable in both acidic and basic media and have good resistance to heat at $280^{\circ}C$. The $UO_2^{+2}$ aqueous solution are not adsorbed on the resins below pH 3.0, but the power of adsorption of $UO_2^{2+}$ increased rapidly above pH 4.0. The optimum equilibrium time for adsorption of metallic ions was twenty minutes and adsorptive power decreased in proportion to crosslinking size of the resins and order of dielectric constants of solvents used and the selective sequence for metal cations is in the order of $UO_2^{2+},\;Cu^{2+}\;and\;Nd^{3+}$.

  • PDF

A Study on the Crystallization Behavior of Al85Ce5Ni10 Amorphous Ribbon (Al85Ce5Ni10 비정질 리본의 결정화 거동에 관한 연구)

  • Moon, J.T.;Jo, W.M.;Shin, B.M.;Lee, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.3
    • /
    • pp.236-243
    • /
    • 1995
  • Since amorphous alloys have been known to have better mechanical and chemical properties than crystalline alloys of the same composition, a great number of studies on the formation of Al-based amorphous alloys have been carried out actively. However, little has been obtained about the effect of Rare-Earth metal and Transition metal addition on amorphous phase formed by melt spinning method. This study included fabrication of amorphous alloy $Al_{85}Ce_5Ni_{10}$ by melt spinning methods and DTA, XRD, TEM analysis to determine crystalization behavoir. Annealing treatments were carried out in Ar atmosphere under isothermal and nonisothermal conditions. The diffraction pattern of non-heated ribbons showed broad form characteristic of glass metallic alloy. The crystallization of amorphous $Al_{85}Ce_5Ni_{10}$ takes place eutedtoidly by homogeneous formation of Al and MS-1, followed by precipitation of the $Al_{11}Ce_3$ and later $MS-1{\rightarrow}Al_3Ni$ transformation.

  • PDF

Microstructural behavior on weld fusion zone of Al-Ti and Ti-Al dissimilar lap welding using single-mode fiber laser

  • Lee, Su-Jin;Kawahito, Yousuke;Kim, Jong-Do;Katayama, Seiji
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.711-717
    • /
    • 2013
  • Titanium (Ti) metal and its alloys are desirable materials for ship hulls and other structures because of their high strength, light weight and corrosion-resistance. And light weight and corrosion-resistant aluminum (Al) is the ideal metal for shipbuilding. The joining of Ti and Al dissimilar metals is one of the effective measures to reduce weight of the structures or to save rare metals. Ti and Al have great differences in materials properties, and intermetallic compounds such as Ti3Al, TiAl, TiAl3 are easily formed at the contacting surface between Ti and Al. Thus, welding or joining of Ti and Al is considered to be extremely difficult. However, it was clarified that ultra-high speed welding could suppress the formation of intermetallic compounds in the previous study. Results of tensile shear strength increases with an increase in the welding speed, and therefore extremely high welding speed (50m/min in this study) is good to dissimilar weldability for Ti and Al. In this study, therefore, full penetration dissimilar lap welding of Ti (upper) - Al (lower) and Al (upper) - Ti (lower) with single-mode fiber laser was tried at ultra-high welding speed, and the microstructure of the interface zones in the dissimilar Al and Ti weld beads was investigated.

Influence of Surface Treatment on Adhesion between Pt Nanoparticle and Carbon Support

  • Kim, Jong Hun;Choi, Han Shin;Yuk, Youngji;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.598-598
    • /
    • 2013
  • The short lifetime of Proton Exchange Membrane Fuel Cell (PEMFC) is the one of the main problems to be solved for commercializing. Especially, the weak adhesion between metal nanoparticles and supports deteriorate the performances of nanocatalysts, therefore, it is considered to be a major failure mechanism. Using force-distance spectroscopy of atomic force microscopy (AFM), we characterized the adhesion between Pt nanoparticles and carbon supports that is crucially related to the durability for membrane fuel cell (MFC) electrode. In our study, force distance curves measured with Pt coated AFM cantilever, mimicking the behavior of corresponding nanoparticles on carbon supports, leads to the adhesion between metal nanoparticles and carbon supports. We found that theadhesion between Pt and HNO3-treated carbon is enhanced by a factor of 4, compared to Pt and bare carbon support, that is consistent with the macroscopic durability test of PEMFC. The higher adhesion between Pt and HNO3-treated carbon can be explained in light of the stronger chemical interaction by C/O functional groups.

  • PDF

Facile Synthesis of SrWO4:Eu3+ Phosphors

  • Bharat, L. Krishna;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.643-643
    • /
    • 2013
  • Recently, synthesis of low-dimensional nanostructures is gaining more importance due to their structural properties and growing potential applications. On the other hand, luminescent materials doped with rare earth ions have drawn immense attention. The commercial phosphors are based on many host materials. Among them, tungstates are being currently investigated by many research groups owing to a wide range of applications. Tungstates are formed by different metal cations (e.g., SrWO4, Na2WO4, NiWO4, Cr2WO6, and ZrW2O8) and their structure depends on the size of the metal cation. Tungstates with large bivalent cations (${\gg}0.1\;nm$) have the scheelite structure and the wolframite structure with smaller ions (<0.1 nm). Strontium tungstate has the scheelite structure which is tetragonal with space group I41/a. The luminescent properties of the tungstate have been extensively explored in application fields such as sensors, detectors, lasers, photoluminiscent devices, photo catalysts, etc. In this work, we synthesized SrWO4 phosphors with different Eu3+ concentrations by using a facile route. The morphology was analyzed by using a field-emission scanning electron microscope, which exhibits the spherical shape. Transmission electron microscope image revealed the spheres composed of nanoparticles. X-ray diffraction patterns confirmed their tetragonal shape. The photoluminescence excitation and emission spectra were analyzed by varying the Eu3+ concentration, which shows a dominant red emission.

  • PDF

Environment Emission and Material Flow Analysis of Chromium in Korea

  • Shin, Dong-won;Kim, Jeong-gon
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.187-196
    • /
    • 2015
  • With the stabilization of Korea's industrialization, it has become interested in the efficient use of rare metals, climate change and industrial environment and safety etc. It is thus making efforts to implement economic policies that address such issues. Therefore it is necessary to understand the demand, supply and use of metal materials. Since 2010, the Korean government has developed the integrated material flow methodology and has been trying to examine the demand, supply and use of metal materials. In 2013, the Korean government surveyed the material flow of chromium. Material flow analysis and environment emission of chromium were investigated 8 steps; (1) raw material, (2) first process, (3) Intermediate product, (4) End product, (5) Use/accumulation, (6) Collection, (7) Recycling, (8) Disposal. Chromium was used for stainless steel, alloy steel, coated sheets, refractory material and coating materials. Recycling was done mainly in use of stainless steel scrap. To ensure efficient use of chromium, process improvement is required to reduce the scrap in the intermediate product stage. In the process of producing of the products using chromium, it was confirmed that chromium was exposed to the environment. It requires more attention and protection against environment emission of chromium.

Removal of heavy metal and Hydrogen sulfide/Nitrophenol using Mackban-stone (맥반석을 이용한 중금속과 악취물질/nitrophenol의 제거)

  • Quen, Zhe-Xue;Yin, Cheng-Ri;Jin, Yin-Shu;Seok, Mi-Soo;Lee, Sung-Taik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.2
    • /
    • pp.45-51
    • /
    • 2001
  • Mackban-stone effectively removed heavy metals, such as Fe, Cu, Cd, and Zn, with best removal of Fe and Cu. And the removal of heavy merals related with ion exchange of Ca. Mackban-stone is also an efficient deodorant of hydrogen sulfide and ammonia and inhibited the growth of E coli. The degradation rare of 4-nitropheno1 by Nocardioides sp. PNP101 and 2,4-dinitrophenol by Strain CJ1 and Rhodococcus sp. DNP 505 are increased by Mackbane-srone.

  • PDF

Discovery of Giant Magnetostriction in Amorphous RFe$_2$B (R = Sm, Tb) Alloys

  • Kim, Jai-Young
    • Journal of Magnetics
    • /
    • v.1 no.2
    • /
    • pp.64-68
    • /
    • 1996
  • Compared with the conventional magnetostriction in Ni alloys which are in the order of several tens ppm (Parts Per Million =10-6), RFe$_2$(R = rare earth element) Laves Phase intermetallic compounds show large saturation magnetostriction in the range of a few thousands ppm. However, the large external magnetic field necessary to obtain saturatio magnetostriction has due to large magnetocrystalline anisotropy energy restrained the applicationof magnetostriction materials in RFe$_2$intermetallic compounds. As a result of its solution, the largest published value of effective giant magnetostriction in a low external magnetic field (less than a few hundred Oe) is reported in this paper by means of amorphisation of RFe$_2$intermetallic compounds with the addition of boron, as a half metal. For the amorphous (SmFe$_2$)0.97 B0.03 alloys, the effective magnetostriction of -545 and -610 $\times$ 10-6 is obtained at 400 and 1,000 Ie, respectively. Moreover, the effective magnetostriction of 590 and 630$\times$10-6 in the amorphous (TbFe$_2$)0.98 B0.02 alloys is also found at 400 and 1,000 Oe, respectively. This result will provide a clue to understanding the effect of half metal on anomalous increase of the effective giant magnetostriction and attract the great attention for magnetostriction applications.

  • PDF

Microencapsulation of Hydrogen Storage Alloys (수소저장합금의 마이크로캡슐화)

  • Kim, Dai Ryong;Kim, Yong Cheol;Keum, Dong Uk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.1 no.1
    • /
    • pp.31-39
    • /
    • 1989
  • Although it has been well known that many metal hydrides are promising to use for hydrogen storage and other applications, some difficulties still remain. Metal hydrides, particularly in powder form, have very poor thermal conductivity. The hydrogen storage alloys degrade intrinsically or extrinsically during repeated hydriding and dehydriding. Elimination of these problems is very important in the practical applications. In order to prevent degradation and to improve the thermal conductivity, the hydrogen storage characteristics of rare-earth type alloy encapsulated with Cu or Ni by means of chemical plating have been investigated. No changes has occured in hydrogen absorption capacity and equilibrium pressure even though the alloy powder is microencapsulated. The first hydrogen absorption rate of the alloy encapsulated increased considerably comparing to uncapsulated sample. In the case of encapsulating the fine powder ($>10{\mu}m$) and subsequent compacting by $8ton/cm^2$, shape of compact is maintained regardless of hydriding and dehydriding. The degree of degradation of the alloy caused by impurity gas of CO or $O_2$ was decreased prominently by encapsulation.

  • PDF

Epitaxial growth of Pt Thin Film on Basal-Plane Sapphire Using RF Magnetron Sputtering

  • 이종철;김신철;송종환;이충만
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.41-41
    • /
    • 1998
  • Rare earth metal films have been used as a buffer layer for growing ferroelectric t thin film or a seed layer for magnetic multilayer. But when it was deposited on s semiconductor substrates for the application of magneto-optic (MO) storage media, it i is difficult to exactly measure magnetic cons떠nts due to shunting current, and so it n needs to grow metal films on insulator substrate to reduce such effect. Recently, it w was reported that ultra-thin Pt layer were epitaxially grown on A12O:J by ion beam s sputtering in 비떠 high vacuum and it can be used as a seed layer for the growth of C Co-contained magnetic multilayer. In this stu$\phi$, Pt thin film were epi떠xially grown on AI2D3 ($\alpha$)OJ) by RF magnetron s sputtering. The crystalline structure was analyzed by transmission electron microscope ( (TEM) and Rutherford Back Scattering (RBS)/Ion Channeling. In TEM study, Pt was b believed to be twinned on AI잉3($\alpha$)01) su$\pi$ace about Pt(ll1) plane.Moreover, RBS c channeling spectra showed that minimum scattering yield of Pt(111)/AI2O:J(1$\alpha$)OJ) was 4 4% and Pt(11J)/AI2D3($\alpha$)OJ) had 3-fold symmetry.

  • PDF