• Title/Summary/Keyword: Rare Earth Metal

Search Result 181, Processing Time 0.025 seconds

Rare Metal Contents and Their Implications of Seabed Mineral Resources Explored by Korea (한국이 탐사 중인 해저광물자원의 희유금속 함량과 의미)

  • Pak, Sang-Joon;Moon, Jai-Woon;Lee, Kyeong-Yong;Chi, Sang-Bum
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.455-466
    • /
    • 2010
  • Seabed mineral resources explored by Korea are categorized into major three types of deposit; manganese nodule, manganese crust and polymetallic sulfides. Pt displays high enrichment factors (400, ore/crust ratios) in manganese nodule. Rare earth oxide content in manganese nodule ranges from 0.037 to 0.302 REO % with mean value of 0.12 REO %. Both of Te and Pt are enriched elements in manganese crust, displaying enrichment factors of 10800 and 150, respectively. Rare earth oxide's contents of manganese crust are slightly higher than manganese nodule's (0.013~0.387 REO %, average = 0.18 REO %). Se and In are outstanding rare metals from seabed polymetallic sulfides, showing enrichment factors of 1300 and 110, respectively. Au (0.8~26.3 g/t) and Ag (0.9~348.0 g/t) are another enriched elements in polymetallic sulfides. The main concern at exploiting seabed mineral resource will be a securing rare metals for high-technology industries and rare metals from subsea mineral deposits will add economic values to commodity candidates such like Co, Ni and Cu.

Effect of Single and Dual Doping of Rare Earth Metal Ce and Nd Elements on Electrochemical Properties of LiNi0.83 Co0.11Mn0.06O2Cathode Lithium-ion Battery Material (리튬이온전지용 양극활물질 LiNi0.83 Co0.11Mn0.06O2의 전기화학적 특성에 미치는 Ce와 Nd 희토류 금속의 단독 혹은 이중 도핑효과)

  • Kim, Yoo-Young;Ha, Jong-Keun;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2019
  • Layered $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode materials single- and dual-doped by the rare-earth elements Ce and Nd are successfully fabricated by using a coprecipitation-assisted solid-phase method. For comparison purposes, non-doping pristine $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode material is also prepared using the same method. The crystal structure, morphology, and electrochemical performances are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) mapping, and electrochemical techniques. The XRD data demonstrates that all prepared samples maintain a typical ${\alpha}-NaFeO_2$-layered structure with the R-3m space group, and that the doped samples with Ce and/or Nd have lower cation mixing than that of pristine samples without doping. The results of SEM and EDS show that doped elements are uniformly distributed in all samples. The electrochemical performances of all doped samples are better than those of pristine samples without doping. In addition, the Ce/Nd dual-doped cathode material shows the best cycling performance and the least capacity loss. At a 10 C-rate, the electrodes of Ce/Nd dual-doped cathode material exhibit good capacity retention of 72.7, 58.5, and 45.2% after 100, 200, and 300 cycles, respectively, compared to those of pristine samples without doping (24.4, 11.1, and 8.0%).

Adsorption Characteristic and Elution Behavior of Rare Earth Metals by Cryptand 22 Synthetic Resin (Cryptand 22 합성수지에 의한 희토류 금속들의 흡착특성과 용리행동)

  • 노기환;김준태
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.1
    • /
    • pp.17-25
    • /
    • 1996
  • Resins with cryptand 22 macrocyclic ligand attached to chloromethylated styrene-1,4-divinylbenzene by substitution reaction were prepared and the effect of pH, metal concentration and cross-linkage of the matrix on the adsorption for $UO_2^{2+}$, $Cd^{2+}$ and $Sm^{3+}$ was investigated. The metal ion was not adsorbed on the resins pH range below 3 but above pH 4 fast adsorption behavior was showed. The resin selectivity determined in ethanol matrix was in increasing order $UO_2^{2+}{\;}>Cd^{2+}{\;}Sm^{3+}$. In addition, these metal ion could be separated on the column packed with 1% crosslinked resin by pH 2.5 $HNO_3$ as an eluent.

  • PDF

Magnetic Properties and Microstructures of Melt Spun Misch Metal-Ferroboron Alloys

  • Ko, K.Y.;Booth, J.G.;Al-Kanani, H.J.;Lee, H.Y.
    • Journal of Magnetics
    • /
    • v.1 no.2
    • /
    • pp.82-85
    • /
    • 1996
  • Magnetic properties and microstructures of melt spun misch metal-ferroboron alloys were investigated. The major phase is the tetragonal (rare earth)$_2Fe_{14}B$ phase. Magnetic properties showed coercivity of 5.6 kOe, remanence of 7.85 kG, and so energy product 8.9 MGOe. Microsturctures in optimum properties showed that matrix was composed of Ce-rich phase while second phase La-rich-oxygen phase with less amount of Fe element than matrix, and triple junction with La-rich phase contrary to matrix.

  • PDF

Current Status of Titanium Smelting Technology for Powder Metallurgy (분말야금을 위한 타이타늄 제련기술 현황)

  • Sohn, Ho-Sang
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.164-172
    • /
    • 2021
  • Titanium is the ninth most abundant element in the Earth's crust and is the fourth most abundant structural metal after aluminum, iron, and magnesium. It exhibits a higher specific strength than steel along with an excellent corrosion resistance, highlighting the promising potential of titanium as a structural metal. However, titanium is difficult to extract from its ore and is classified as a rare metal, despite its abundance. Therefore, the production of titanium is exceedingly low compared to that of common metals. Titanium is conventionally produced as a sponge by the Kroll process. For powder metallurgy (PM), hydrogenation-dehydrogenation (HDH) of the titanium sponge or gas atomization of the titanium bulk is required. Therefore, numerous studies have been conducted on smelting, which replaces the Kroll process and produces powder that can be used directly for PM. In this review, the Kroll process and new smelting technologies of titanium for PM, such as metallothermic, electrolytic, and hydrogen reduction of TiCl4 and TiO2 are discussed.

Reductive reaction of U and Lanthanides using Cd-Li metal in LiCl-KCl Molten Salt (LiCl-KCl 용융염에서 Cd-Li 금속을 이용한 U 및 란탄족의 환원반응)

  • 우문식;이병직;김응호;유재형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.339-339
    • /
    • 2004
  • 원자로를 이용하여 장수명핵종(long lived nucleus)을 소멸처리하는 과정에서 초우라늄(TRU, transuranium)과 희토류(RE, rare earth) 금속에 포함되어 있는 소량의 핵분열성(fissile) 물질인 우라늄을 제거할 필요가 있다. 본 실험은 LiCl-KCl 용융염계에서 전해제련법(Electrowinning)을 이용하여 용융염욕에 존재하는 우라늄을 제거하기 위하여 필요한 Cd-Li 양전극 물질을 제조하였고, 제조된 금속을 이용하여 우라늄 및 란탄족(Dy, Ce, Y, Nd, Gd) 금속의 환원 특성을 파악하였다.(중략)

  • PDF

Development of P/M Aluminum Alloy with Fine Microstructure

  • Tokuoka, Terukazu;Kaji, Toshihiko;Nishioka, Takao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.712-713
    • /
    • 2006
  • We successfully developed Al-Si-Transition Metal (TM) -Rare Earth (RE) Powder Metallurgy (P/M) alloy with fine microstructure, which has high strength at high temperature. This material was compacted rapidly solidified powder and directly consolidated by hot extruding or forging. Before consolidating, rapid heating was performed on powder compaction in order to keep the fine microstructure in powder state. We have also investigated the processing conditions of this new alloy by computing simulations and experiments.

  • PDF

Magnetostrictive Properties of Polymer-Bonded Fe-Co Based Alloy Composites

  • S. M. Na;S. J. Suh;K. H. Shin;Lee, Y. S.;S. H. Lim
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.138-139
    • /
    • 2002
  • Polymer-bonded magnetostrictive composites have some distinct advantages over conventional type materials in being cost effective and suitable for high frequency applications due to high electrical resistivity. Composites of rare earth based alloys were reported to show good magnetostrictive characteristics both in static and dynamic conditions [1]. It was originally thought that the application of the polymer-bonding technique to transition metal alloys is straightforward. (omitted)

  • PDF