• Title/Summary/Keyword: RapidEye 영상

Search Result 42, Processing Time 0.018 seconds

RNCC-based Fine Co-registration of Multi-temporal RapidEye Satellite Imagery (RNCC 기반 다시기 RapidEye 위성영상의 정밀 상호좌표등록)

  • Han, Youkyung;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.581-588
    • /
    • 2018
  • The aim of this study is to propose a fine co-registration approach for multi-temporal satellite images acquired from RapidEye, which has an advantage of availability for time-series analysis. To this end, we generate multitemporal ortho-rectified images using RPCs (Rational Polynomial Coefficients) provided with RapidEye images and then perform fine co-registration between the ortho-rectified images. A DEM (Digital Elevation Model) extracted from the digital map was used to generate the ortho-rectified images, and the RNCC (Registration Noise Cross Correlation) was applied to conduct the fine co-registration. Experiments were carried out using 4 RapidEye 1B images obtained from May 2015 to November 2016 over the Yeonggwang area. All 5 bands (blue, green, red, red edge, and near-infrared) that RapidEye provided were used to carry out the fine co-registration to show their possibility of being applicable for the co-registration. Experimental results showed that all the bands of RapidEye images could be co-registered with each other and the geometric alignment between images was qualitatively/quantitatively improved. Especially, it was confirmed that stable registration results were obtained by using the red and red edge bands, irrespective of the seasonal differences in the image acquisition.

Automated Improvement of RapidEye 1-B Geo-referencing Accuracy Using 1:25,000 Digital Maps (1:25,000 수치지도를 이용한 RapidEye 위성영상의 좌표등록 정확도 자동 향상)

  • Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.505-513
    • /
    • 2014
  • The RapidEye can acquire the 6.5m spatial resolution satellite imagery with the high temporal resolution on each day, based on its constellation of five satellites. The image products are available in two processing levels of Basic 1B and Ortho 3A. The Basic 1B image have radiometric and sensor corrections and include RPCs (Rational Polynomial Coefficients) data. In Korea, the geometric accuracy of RapidEye imagery can be improved, based on the scaled national digital maps that had been built. In this paper, we present the fully automated procedures to georegister the 1B data using 1:25,000 digital maps. Those layers of map are selected if the layers appear well in the RapidEye image, and then the selected layers are RPCs-projected into the RapidEye 1B space for generating vector images. The automated edge-based matching between the vector image and RapidEye improves the accuracy of RPCs. The experimental results showed the accuracy improvement from 2.8 to 0.8 pixels in RMSE when compared to the maps.

Impervious Surface Mapping of Cheongju by Using RapidEye Satellite Imagery (RapidEye 위성영상을 이용한 청주시의 불투수면지도 생성기법)

  • Park, Hong Lyun;Choi, Jae Wan;Choi, Seok Keun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.1
    • /
    • pp.71-79
    • /
    • 2014
  • Most researches have created the impervious surface map by using low-spatial-resolution satellite imagery and are inefficient to generate the object-based impervious map with a broad area. In this study, segment-based impervious surface mapping algorithm is proposed using the RapidEye satellite imagery in order to map impervious area. At first, additional bands are generated by using TOA reflectance conversion RapidEye data. And then, shadow and water class are extracted using training data of converted reflectance image. Object-based impervious surface can be generated by spectral mixture analysis based on land cover map of Ministry of Environment with medium scale, in the case of other classes except shadow and water classes. The experiment shows that result by our method represents high classification accuracy compared to reference data, quantitatively.

Analysis of Land Uses in the Nakdong River Floodplain Using RapidEye Imagery and LiDAR DEM (RapidEye 영상과 LiDAR DEM을 이용한 낙동강 범람원 내 토지 이용 현황 분석)

  • Choung, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.189-199
    • /
    • 2014
  • Floodplain is a flat plain between levees and rivers. This paper suggests a methodology for analyzing the land uses in the Nakdong River floodplain using the RapidEye imagery and the given LiDAR(LIght Detection And Ranging) DEM(Digital Elevation Models). First, the levee boundaries are generated using the LiDAR DEM, and the area of the floodplain is extracted from the given RapidEye imagery. The land uses in the floodplain are identified in the extracted RapidEye imagery by the ISODATA(Iterative Self-Organizing Data Analysis Technique Analysis) clustering. The overall accuracy of the identified land uses by the ISODATA clustering is 91%. Analysis of the identified land uses in the floodplain is implemented by counting the number of the pixels constituting the land cover clusters. The results of this research shows that the area of the river occupies 46%, the area of the bare soil occupies 36%, the area of the marsh occupies 11%, and the area of the grass occupies 7% in the identified floodplain.

An Implementation of the OTB Extension to Produce RapidEye Surface Reflectance and Its Accuracy Validation Experiment (RapidEye 영상정보의 지표반사도 생성을 위한 OTB Extension 개발과 정확도 검증 실험)

  • Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.485-496
    • /
    • 2022
  • This study is for the software implementation to generate atmospheric and surface reflectance products from RapidEye satellite imagery. The software is an extension based on Orfeo Toolbox (OTB) and an open-source remote sensing software including calibration modules which use an absolute atmospheric correction algorithm. In order to verify the performance of the program, the accuracy of the product was validated by a test image on the Radiometric Calibration Network (RadCalNet) site. In addition, the accuracy of the surface reflectance product generated from the KOMPSAT-3A image, the surface reflectance of Landsat Analysis Ready Data (ARD) of the same site, and near acquisition date were compared with RapidEye-based one. At the same time, a comparative study was carried out with the processing results using QUick Atmospheric Correction (QUAC) and Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) tool supported by a commercial tool for the same image. Similar to the KOMPSAT-3A-based surface reflectance product, the results obtained from RapidEye Extension showed accuracy of agreement level within 5%, compared with RadCalNet data. They also showed better accuracy in all band images than the results using QUAC or FLAASH tool. As the importance of the Red-Edge band in agriculture, forests, and the environment applications is being emphasized, it is expected that the utilization of the surface reflectance products of RapidEye images produced using this program will also increase.

A Study on the Extraction of a River from the RapidEye Image Using ISODATA Algorithm (ISODATA 기법을 이용한 RapidEye 영상으로부터 하천의 추출에 관한 연구)

  • Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.1-14
    • /
    • 2012
  • A river is defined as the watercourse flowing through its channel, and the mapping tasks of a river plays an important role for the research on the topographic changes in the riparian zones and the research on the monitoring of flooding in its floodplain. However, the utilization of the ground surveying technologies is not efficient for the mapping tasks of a river due to the irregular surfaces of the riparian zones and the dynamic changes of water level of a river. Recently, the spatial information data sets are widely used for the coastal mapping tasks due to the acquisition of the topographic information without human accessibility. In this research, we tried to extract a river from the RapidEye imagery by using the ISODATA(Iterative Self_Organizing Data Analysis) classification algorithm with the two different parameters(NIR (Near Infra-Red) band and NDVI(Normalized Difference Vegetation Index)). First, the two different images(the NIR band image and the NDVI image) were generated from the RapidEye imagery. Second, the ISODATA algorithm were applied to each image and each river was generated in each image through the post-processing steps. River boundaries were also extracted from each classified image using the Sobel edge detection algorithm. Ground truths determined by the experienced expert are used for the assessment of the accuracy of an each generated river. Statistical results show that the extracted river using the NIR band has higher accuracies than the extracted river using the NDVI.

Estimation of Paddy Field Area in North Korea Using RapidEye Images (RapidEye 영상을 이용한 북한의 논 면적 산정)

  • Hong, Suk Young;Min, Byoung-Keol;Lee, Jee-Min;Kim, Yihyun;Lee, Kyungdo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1194-1202
    • /
    • 2012
  • Remotely sensed satellite images can be applied to monitor and obtain land surface information on inaccessible areas. We classified paddy field area in North Korea based on on-screen digitization with visual interpretation using 291 RapidEye satellite images covering the whole country. Criteria for paddy field classification based on RapidEye imagery acquired at different time of rice growth period was defined. Darker colored fields with regular shape in the images with false color composite from early May to late June were detected as rice fields. From early July to late September, it was hard to discriminate rice canopy from other type of vegetation including upland crops, grass, and forest in the image. Regular form of readjusted rice field in the plains and uniform texture when compared with surrounding vegetation. Paddy fields classified from RapidEye imagery were mapped and the areas were calculated by administrative district, province or city. Sixty six percent of paddy fields ($3,521km^2$) were distributed in the west coastal regions including Pyeongannam-do, Pyeonganbuk-do, and Hwanghaenam-do. The paddy field areas classified from RapidEye images showed less than 1% of difference from the paddy field areas of North Korea reported by FAO/WFP (Food and Agriculture Organization/World Food Programme).

The multi-temporal characteristics of spectral vegetation indices for agricultural land use on RapidEye satellite imagery (농촌지역 토지이용유형별 RapidEye 위성영상의 분광식생지수 시계열 특성)

  • Kim, Hyun-Ok;Yeom, Jong-Min;Kim, Youn-Soo
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.149-155
    • /
    • 2011
  • A fast-changing agriculture environment induced by global warming and abnormal climate conditions demands scientific systems for monitoring and predicting crop conditions as well as crop yields at national level. Remote sensing opens up a new application field for precision agriculture with the help of commercial use of high resolution optical as well as radar satellite data. In this study, we investigated the multi-temporal spectral characteristics relative to different agricultural land use types in Korea using RapidEye satellite imagery. There were explicit differences between vegetation and non-vegetation land use types. Also, within the vegetation group spectral vegetation indices represented differences in temporal changing trends as to plant species and paddy types.

A Study on Object-Based Image Analysis Methods for Land Cover Classification in Agricultural Areas (농촌지역 토지피복분류를 위한 객체기반 영상분석기법 연구)

  • Kim, Hyun-Ok;Yeom, Jong-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.26-41
    • /
    • 2012
  • It is necessary to manage, forecast and prepare agricultural production based on accurate and up-to-date information in order to cope with the climate change and its impacts such as global warming, floods and droughts. This study examined the applicability as well as challenges of the object-based image analysis method for developing a land cover image classification algorithm, which can support the fast thematic mapping of wide agricultural areas on a regional scale. In order to test the applicability of RapidEye's multi-temporal spectral information for differentiating agricultural land cover types, the integration of other GIS data was minimized. Under this circumstance, the land cover classification accuracy at the study area of Kimje ($1300km^2$) was 80.3%. The geometric resolution of RapidEye, 6.5m showed the possibility to derive the spatial features of agricultural land use generally cultivated on a small scale in Korea. The object-based image analysis method can realize the expert knowledge in various ways during the classification process, so that the application of spectral image information can be optimized. An additional advantage is that the already developed classification algorithm can be stored, edited with variables in detail with regard to analytical purpose, and may be applied to other images as well as other regions. However, the segmentation process, which is fundamental for the object-based image classification, often cannot be explained quantitatively. Therefore, it is necessary to draw the best results based on expert's empirical and scientific knowledge.

Assessment of the FC-DenseNet for Crop Cultivation Area Extraction by Using RapidEye Satellite Imagery (RapidEye 위성영상을 이용한 작물재배지역 추정을 위한 FC-DenseNet의 활용성 평가)

  • Seong, Seon-kyeong;Na, Sang-il;Choi, Jae-wan
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.823-833
    • /
    • 2020
  • In order to stably produce crops, there is an increasing demand for effective crop monitoring techniques in domestic agricultural areas. In this manuscript, a cultivation area extraction method by using deep learning model is developed, and then, applied to satellite imagery. Training dataset for crop cultivation areas were generated using RapidEye satellite images that include blue, green, red, red-edge, and NIR bands useful for vegetation and environmental analysis, and using this, we tried to estimate the crop cultivation area of onion and garlic by deep learning model. In order to training the model, atmospheric-corrected RapidEye satellite images were used, and then, a deep learning model using FC-DenseNet, which is one of the representative deep learning models for semantic segmentation, was created. The final crop cultivation area was determined as object-based data through combination with cadastral maps. As a result of the experiment, it was confirmed that the FC-DenseNet model learned using atmospheric-corrected training data can effectively detect crop cultivation areas.