• Title/Summary/Keyword: Rapid thermal process

Search Result 453, Processing Time 0.031 seconds

Growth of Graphene Films from Solid-state Carbon Sources

  • Kwak, Jinsung;Kwon, Tae-Yang;Chu, Jae Hwan;Choi, Jae-Kyung;Lee, Mi-Sun;Kim, Sung Youb;Shin, Hyung-Joon;Park, Kibog;Park, Jang-Ung;Kwon, Soon-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.181.2-181.2
    • /
    • 2014
  • A single-layer graphene has been uniformly grown on a Cu surface at elevated temperatures by thermally processing a poly (methyl methacrylate) (PMMA) film in a rapid thermal annealing (RTA) system under vacuum. The detailed chemistry of the transition from solid-state carbon to graphene on the catalytic Cu surface was investigated by performing in-situ residual gas analysis while PMMA/Cu-foil samples being heated, in conjunction with interrupted growth studies to reconstruct ex-situ the heating process. We found that the gas species of mass/charge (m/e) ratio of 15 ($CH_3{^+}$) was mainly originated from the thermal decomposition of PMMA, indicating that the formation of graphene occurs with hydrocarbon molecules vaporized from PMMA, such as methane and/or methyl radicals, as precursors rather than by the direct graphitization of solid-state carbon. We also found that the temperature for dominantly vaporizing hydrocarbon molecules from PMMA and the length of time, the gaseous hydrocarbon atmosphere is maintained, are dependent on both the heating temperature profile and the amount of a solid carbon feedstock. From those results, we strongly suggest that the heating rate and the amount of solid carbon are the dominant factors to determine the crystalline quality of the resulting graphene film. Under optimal growth conditions, the PMMA-derived graphene was found to have a carrier (hole) mobility as high as ${\sim}2,700cm^2V^{-1}s^{-1}$ at room temperature, which is superior to common graphene converted from solid carbon.

  • PDF

Brush-painted Ti-doped In2O3 Transparent Conducting Electrodes Using Nano-particle Solution for Printable Organic Solar Cells

  • Jeong, Jin-A;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.458.2-458.2
    • /
    • 2014
  • We have demonstrated that simple brush-painted Ti-doped $In_2O_3$(TIO) films can be used as a cost effective transparent anodes for organic solar cells (OSCs). We examined the RTA effects on the electrical, optical, and structural properties of the brush painted TIO electrodes. By the direct brushing of TIO nanoparticle ink and rapid thermal annealing (RTA), we can simply obtain TIO electrodes with a low sheet resistance of 28.25 Ohm/square and a high optical transmittance of 85.48% under atmospheric ambient conditions. Furthermore, improvements in the connectivity of the TIO nano-particles in the top region during the RTA process play an important role in reducing the resistivity of the brush-painted TIO anode. In particular, the brush painted TIO films showed a much higher mobility ($33.4cm^2/V-s$) than that of previously reported solution-process transparent oxide films ($1{\sim}5cm^2/V-s$) due to the effects of the Ti dopant with higher Lewis acid strength (3.06) and the reduced contact resistance of TIO nanoparticles. The OSCs fabricated on the brush-painted TIO films exhibited cell-performance with an open circuit voltage (Voc) of 0.61 V, shot circuit current (Jsc) of $7.90mA/cm^2$, fill factor (FF) of 61%, and power conversion efficiency (PCE) of 2.94%. This indicates that brush-painted TIO film is a promising cost-effective transparent electrode for printing-based OSCs with its simple process and high performance.

  • PDF

Microstructure Characterization for Nano-thick Ir-inserted Nickel Silicides (나노급 Ir 삽입 니켈실리사이드의 미세구조 분석)

  • Song, Oh-Sung;Yoon, Ki-Jeong;Lee, Tae-Hyun;Kim, Moon-Je
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.207-214
    • /
    • 2007
  • We fabricated thermally-evaporated 10 -Ni/(poly)Si and 10 -Ni/1 -Ir/(poly)Si structures to investigate the microstructure of nickel monosilicide at the elevated temperatures required for annealing. Silicides underwent rapid at the temperatures of 300-1200 for 40 seconds. Silicides suitable for the salicide process formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester was used to investigate the sheet resistances. A transmission electron microscope(TEM) and an Auger depth profile scope were employed for the determination of vertical section structure and thickness. Nickel silicides with iridium on single crystal silicon actives and polycrystalline silicon gates shoed low resistance up to 1000 and 800, respectively, while the conventional nickle monosilicide showed low resistance below 700. Through TEM analysis, we confirmed that a uniform, 20 -thick silicide layer formed on the single-crystal silicon substrate for the Ir-inserted case while a non-uniform, agglomerated layer was observed for the conventional nickel silicide. On the polycrystalline silicon substrate, we confirmed that the conventional nickel silicide showed a unique silicon-silicide mixing at the high silicidation temperature of 1000. Auger depth profile analysis also supports the presence of thismixed microstructure. Our result implies that our newly proposed iridium-added NiSi process may widen the thermal process window for the salicide process and be suitable for nano-thick silicides.

Oxygen Permeation and Hydrogen Production of BaCo1-x-yFexZryO3-δ by a Modified Glycine-nitrate Process (MGNP) (Modified glycine-nitrate process(MGNP)로 합성한 BaCo1-x-yFexZryO3-δ 산소투과도 및 수소생산성)

  • Yi, Eunjeong;Hwang, Haejin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • A dense mixed ionic and electronic conducting ceramic membrane is one of the most promising materials because it can be used for separation of oxygen from the mixture gas. The $ABO_3$ perovskite structure shows high chemical stability at high temperatures under reduction and oxidation atmospheres. $BaCo_{1-x-y}Fe_xZr_yO_{3-{\delta}}$ (BCFZ) was well-known material as high mechanical strength, low thermal conductivity and stability in the high valence state. Glycine Nitrate Process (GNP) is rapid and effective method for powder synthesis using glycine as a fuel and show higher product crystallinity compared to solid state reaction and citrate-EDTA method. BCFZ was fabricated by modified glycine nitrate process. In order to control the burn-up reaction, $NH_4NO_3$ was used as extra nitrate. According to X-Ray Diffraction (XRD) results, BCFZ was single phase regardless of Zr dopants from y=0.1 to 0.3 on B sites. The green compacts were sintered at $1200^{\circ}C$ for 2 hours. Oxygen permeability, methane partial oxidation rate and hydrogen production ability of the membranes were characterized by using Micro Gas Chromatography (Micro GC) under various condition. The high oxygen permeation flux of BCFZ 1-451 was about $1ml{\cdot}cm^{-2}s^{-1}$. Using the humidified Argon gas, BCFZ 1-433 produced hydrogen about $1ml{\cdot}cm^{-2}s^{-1}$.

Microstructure Characterization for Nano-thick Nickel Cobalt Composite Silicides from 10 nm-Ni0.5Co0.5 Alloy films (10 nm 두께의 니켈 코발트 합금 박막으로부터 제조된 니켈코발트 복합실리사이드의 미세구조 분석)

  • Song, Oh-Sung;Kim, Sang-Yeob;Kim, Jong-Ryul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.308-317
    • /
    • 2007
  • We fabricated thermally-evaporated 10 nm-Ni/(poly)Si and 10 nm-$Ni_{0.5}Co_{0.5}$/(Poly)Si structures to investigate the microstructure of nickel silicides at the elevated temperatures required lot annealing. Silicides underwent rapid annealing at the temperatures of $600{\sim}1100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester was used to investigate the sheet resistances. A transmission electron microscope and an Auger depth profilescope were employed for the determination of vortical microstructure and thickness. Nickel silicides with cobalt on single crystal silicon actives and polycrystalline silicon gates showed low resistance up to $1100^{\circ}C$ and $900^{\circ}C$, respectively, while the conventional nickle monosilicide showed low resistance below $700^{\circ}C$. Through TEM analysis, we confirmed that a uniform, $10{\sim}15 nm$-thick silicide layer formed on the single-crystal silicon substrate for the Co-alloyed case while a non-uniform, agglomerated layer was observed for the conventional nickel silicide. On the polycrystalline silicon substrate, we confirmed that the conventional nickel silicide showed a unique silicon-silicide mixing at the high silicidation temperature of $1000^{\circ}C$. Auger depth profile analysis also supports the presence of this mixed microstructure. Our result implies that our newly proposed NiCo-alloy composite silicide process may widen the thermal process window for the salicide process and be suitable for nano-thick silicides.

Property of Nano-thickness Nickel Silicides with Low Temperature Catalytic CVD (Catalytic CVD 저온공정으로 제조된 나노급 니켈실리사이드의 물성)

  • Choi, Yongyoon;Kim, Kunil;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.133-140
    • /
    • 2010
  • 10 nm thick Ni layers were deposited on 200 nm $SiO_2/Si$ substrates using an e-beam evaporator. Then, 60 nm or 20 nm thick ${\alpha}$-Si:H layers were grown at low temperature (<$200^{\circ}C$) by a Catalytic-CVD. NiSi layers were already formed instantaneously during Cat-CVD process regardless of the thickness of the $\alpha$-Si. The resulting changes in sheet resistance, microstructure, phase, chemical composition, and surface roughness with the additional rapid thermal annealing up to $500^{\circ}C$ were examined using a four point probe, HRXRD, FE-SEM, TEM, AES, and SPM, respectively. The sheet resistance of the NiSi layer was 12${\Omega}$/□ regardless of the thickness of the ${\alpha}$-Si and kept stable even after the additional annealing process. The thickness of the NiSi layer was 30 nm with excellent uniformity and the surface roughness was maintained under 2 nm after the annealing. Accordingly, our result implies that the low temperature Cat-CVD process with proposed films stack sequence may have more advantages than the conventional CVD process for nano scale NiSi applications.

Electrical properties of metal-oxide-semiconductor structures containing Si nanocrystals fabricated by rapid thermal oxidation process (급속열처리산화법으로 형성시킨 $SiO_2$/나노결정 Si의 전기적 특성 연구)

  • Kim, Yong;Park, Kyung-Hwa;Jung, Tae-Hoon;Park, Hong-Jun;Lee, Jae-Yeol;Choi, Won-Chul;Kim, Eun-Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • Metal oxide semiconductor (MOS) structures containing nanocrystals are fabricated by using rapid thermal oxidations of amorphous silicon films. The amorphous films are deposited either by electron beam deposition method or by electron beam deposition assisted by Ar ion beam during deposition. Post oxidation of e-beam deposited film results in relatively small hysteresis of capacitance-voltage (C-V) and the flat band voltage shift, $\DeltaV_{FB}$ is less than 1V indicative of the formation of low density nanocrystals in $SiO_2$ near $SiO_2$/Si interface. By contrast, we observe very large hysteresis in C-V characteristics for oxidized ion-beam assisted e-beam deposited sample. The flat band voltage shift is larger than 22V and the hysteresis becomes even broader as increasing injection times of holes at accumulation condition and electrons at inversion condition. The result indicates the formation of slow traps in $SiO_2$ near $SiO_2$/Si interface which might be related to large density nanocrystals. Roughly estimated trap density is $1{\times}10^{13}cm^{-2}$. Such a large hysteresis may be explained in terms of the activation of adatom migration by Ar ion during deposition. The activated migration may increase nucleation rate of Si nuclei in amorphous Si matrix. During post oxidation process, nuclei grow into nanocrystals. Therefore, ion beam assistance during deposition may be very feasible for MOS structure containing nanocrystals with large density which is a basic building block for single electron memory device.

  • PDF

Development of Microfluidic Chip for Enrichment and DNA Extraction of Bacteria Using Concanavalin A Coated Magnetic Particles (Concanavalin A가 코팅 된 자성 입자를 이용한 미생물 농축 및 유전자 추출 칩 개발)

  • Kwon, Kirok;Gwak, Hogyeong;Hyun, Kyung-A;Jung, Hyo-Il
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.237-241
    • /
    • 2018
  • The real-time enrichment and detection of pathogens are serious issues and rapidly evolving field of research because of the ability of these pathogens to cause infectious diseases. In general, bacterial detection is accomplished by conventional colony counting or by polymerase chain reaction (PCR) after DNA extraction. As colony counting requires considerable time to cultivate, PCR is an attractive method for rapid detection. A small number of pathogens can cause diseases. Hence, a pretreatment process, such as enrichment is essential for detecting bacteria in an actual environment. Thus, in this study, we developed a microfluidic chip capable of performing rapid enrichment of bacteria and the extraction of their genes. A lectin, i.e., Concanavalin A (ConA), which shows binding affinity to the surface of most bacteria, was coated on the surface of magnetic particles to nonspecifically capture bacteria. It was subsequently concentrated through magnetic forces in a microfluidic channel. To lyse the captured bacteria, magnetic particles were irradiated by a wavelength of 532nm. The photo-thermal effect on the particles was sufficient for extracting DNA, which was consequently utilized for the identification of bacteria. Our device will help monitor the existence of bacteria in various environmental situations such as water, air, and soil.

Using Two-Dimensional Chemiluminescence Images to Study Inhomogeneity in Mixture Gas in the Combustion Chamber for HCCI Combustion (이차원발광화상계측에 의한 예혼합압축자기착화연소의 연소실내 혼합기의 불균질성에 관한 연구)

  • Lim, Ock-Taeck;Iida, Norimasa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1043-1050
    • /
    • 2010
  • Fuel stratification and thermal stratification occur in the HCCI combustion chamber on a microscopic scale. They affect the ignition and combustion processes. In this study, the effect of the inhomogeneity in the mixture gas on the HCCI combustion process was investigated. Two-dimensional chemiluminescence images were captured using a framing camera to evaluate the flame structure. DME was used as the test fuel. First, the effect of inhomogeneity in the fuel distribution in the premixture was investigated for the four-stroke optically accessible engine. Then, by comparing the combustion of the homogeneous mixture in the rapid compression machine, which does not contain any residual gas, with the combustion in the four-stroke engine, the effect of inhomogeneity in temperature due to the residual gas was analyzed. The results showed that a time lag appears spatially in combustion under inhomogeneous conditions in the four-stroke engine. The spatial variation in the combustion without the residual gas in the rapid compression machine is less than that in the combustion in the four-stroke engine.

Effect of Reaction Gases on PFCs Treatment Using Arc Plasma Process (아크 플라즈마를 이용한 과불화합물 처리공정에서 반응가스에 의한 효과)

  • Park, Hyun-Woo;Choi, Sooseok;Park, Dong-Wha
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • The treatment of chemically stable perflourocompounds (PFCs) requires a large amount of energy. An energy efficient arc plasma system has been developed to overcome such disadvantage. $CF_4$, $SF_6$ and $NF_3$ were injected into the plasma torch directly, and net plasma power was estimated from the measurement of thermal efficiency of the system. Effects of net plasma power, waste gas flow rate and additive gases on the destruction and removal efficiency (DRE) of PFCs were examined. The calculation of thermodynamic equilibrium composition was also conducted to compare with experimental results. The average thermal efficiency was ranged from 60 to 66% with increasing waste gas flow rate, while DRE of PFCs was decreased with increasing gas flow rate. On the other hand, DRE of each PFCs was increased with the increasing input power. Maximum DREs of $CF_4$, $SF_6$ and $NF_3$ were 4%, 15% and 90%, respectively, without reaction gas at the fixed input power and waste gas flow rate of 3 kW and 70 L/min. A rapid increase of DRE was found using hydrogen or oxygen additional gases. Hydrogen was more effective than oxygen to decompose PFCs and to control by-products. The major by-product in the arc plasma process with hydrogen was hydrofluoric acid that is easy to be removed by a wet scrubber. DREs of $CF_4$, $SF_6$ and $NF_3$ were 25%, 39% and 99%, respectively, using hydrogen additional gas at the waste gas flow rate of 100 L/min and the input power of 3 kW.