• Title/Summary/Keyword: Rapid fading channel

Search Result 14, Processing Time 0.054 seconds

An Efficient Channel Estimation Method in Rapid Fading Channel for OFDM Systems (OFDM 시스템을 위한 고속의 채널환경에서의 효율적인 채널추정기법)

  • Kang, Yeon-Seok;Hwang, Tae-Wook;Kim, Young-Soo;Suh, Duk-Young;Kim, Jin-Sang
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.136-144
    • /
    • 2004
  • In this paper, we present an improved channel estimation method for orthogonal frequency division multiplexing systems using pilot-symbol-aided parameter estimation. Conventional linear minimum mean square error(LMMSE) channel estimation method uses only pilot symbols for channel estimation. So, as the fading channel varies rapidly, a performance is decreased. We proposed a channel estimation method, which estimates channel attenuation in the middle of pilots using pilot symbols and then estimates the whole channel attenuation with pilots and estimated channel attenuation. Compared with conventional LMMSE channel estimation method, the proposed method is significantly robust in a rapid fading channel with high Doppler frequency and delay spread.

  • PDF

Massive MIMO TWO-Hop Relay Systems Over Rician Fading Channels

  • Cao, Jian;Yu, Shujuan;Yang, Jie;Zhang, Yun;Zhao, Shengmei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5410-5426
    • /
    • 2019
  • With the advent of the fifth-generation (5G) era, Massive multiple-input multiple-output (MIMO) relay systems have experienced the rapid development. Recently, the performance analysis models of Massive MIMO relay systems have been proposed, which are mostly based on Rayleigh fading channels. In order to create a more suitable model for 5G Internet of Things scenarios, our study is based on the Rician fading channels, where line-of-sight (LOS) path exists in the channels. In this paper, we assume the channel state information (CSI) is perfect. In this case, we use statistical information to derive the analytical exact closed-form expression for the achievable sum rate of the uplink for the Massive MIMO two-hop relay system over Rician fading channels. Moreover, considering the different communication scenarios, we derive the analytical exact closed-form expression for the achievable sum rates of the uplink for other three scenarios. Finally, based on these expressions, we make simulations and analyze the performance under different transmit powers and Rician-factors, which provides a theoretical basis and reference for further research.

Performance Improvement of LMMSE Channel Estimation Method for OFDM Systems (OFDM 시스템을 위한 LMMSE 채널추정기법의 성능 개선)

  • Kang, Yeon-Seok;Kim, Young-Soo;Suh, Doug-Young;Kim, Jin-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.43-50
    • /
    • 2005
  • In this paper, we present an improved channel estimation method for orthogonal frequency division multipexing systems using pilot symbol assisted modulation(PSAM). Conventional linear minimum mean square error(LMMSE) channel estimation method uses only pilot symbols for channel estimation. So, as the fading channel varies rapidly, the system performance is degraded. The basic idea of the proposed scheme is that we firstly estimate channel coefficients at the middle point between two pilot symbols and then compute the channel attenuation by using LMMSE method. Superior performance achieved with the proposed method is illustrated by simulation experiments with the Doppler frequency of 36Hz and 185Hz in comparison with conventional LMMSE channel estimator.

Gains Achieved by Symbol-by-Symbol Rate Adaptation on Error-Constrained Data Throughput over Fading Channels

  • Lee, Daniel C.;Tsaur, Lih-Feng
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.213-218
    • /
    • 2007
  • Methods for symbol-by-symbol channel feedback and adaptation of symbol durations have been recently proposed. In this paper, we quantitatively analyze the gain in error-constrained data throughput due to such an extremely rapid adaptation of symbol durations to fast-time-varying channels. The results show that a symbol-by-symbol adaptation can achieve a throughput gain by orders of magnitude over a frame-by-frame adaptation.

A Study on Selection Criterions for Selection Diversity in WAVE Systems (WAVE 시스템에서 선택 다이버시티를 위한 선택 기준에 대한 연구)

  • Hong, Dae-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.9-16
    • /
    • 2015
  • In this paper, selection criterions on selection diversity are researched. The diversity is applied to the multiple antenna system based on wireless access in vehicular environment (WAVE) standard for rapid varying channel. Least squares (LS) based decision feedback equalizer (DFE) are used for channel equalization. Received signal is regenerated by means of the decision feedback path. In the selection diversity, the regenerated signal as well as the received signal is selected according to selection criterion. The decision feedback algorithm can follow the fast speed of WAVE fading channel. To control the tracking speed of the time-varying channel, simple low pass filter is used. Finally, the estimated channel value recovers the distorted payloads. Signal power before automatic gain control (AGC) in analog stage can be used as a selection criterion. In the digital stage, signal power after AGC, noise power after AGC, signal to noise ratio after AGC and cross-correlation method can be used as selection criterions. According to the simulation results, the performance of the selection diversity is improved in comparison with that of the combining diversity for the WAVE fading channel.

Space Diversity Combining Scheme Using Phase Difference between Main and Diversity Signals (메인과 다이버시티 신호사이 위상차를 이용한 공간 다이버시티 결합방법)

  • Jung, Gillyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.5
    • /
    • pp.44-51
    • /
    • 2015
  • The deployment of high capacity backhaul is required due to explosive growth in mobile data services. For rapid backhaul deployment, point to point microwave is a much easier and cheaper technology. The space diversity scheme is used in point to point microwave links. The purpose of space diversity is to overcome fading by combining signals from two separate receiver antennas. For signal combining algorithm, maximum power and minimum distortion methods were used and these algorithms were reported not to be good enough for robustness in selective fading. In this paper, a more practically efficient signal combining scheme from the main and diversity branch is proposed and evaluated in selective fading channel. The proposed algorithm has shown significant performance improvement in terms of signal spectrum.

Design and Performance Analysis of the Efficient Equalization Method for OFDM system using QAM in multipath fading channel (다중경로 페이딩 채널에서 QAM을 사용하는 OFDM시스템의 효율적인 등화기법 설계 및 성능분석)

  • 남성식;백인기;조성호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.1082-1091
    • /
    • 2000
  • In this paper, the efficient equalization method for OFDM(Orthogonal Frequency Division Multiflexing) System using the QAM(Quadrature Amplitude Modulation) in multipath fading channel is proposed in order to faster and more efficiently equalize the received signals that are sent over real channel. In generally, the one-tap linear equalizers have been used in the frequency-domain as the existing equalization method for OFDM system. In this technique, if characteristics of the channel are changed fast, the one-tap linear equalizers cannot compensate for the distortion due to time variant multipath channels. Therefore, in this paper, we use one-tap non-linear equalizers instead of using one-tap linear equalizers in the frequency-domain, and also use the linear equalizer in the time-domain to compensate the rapid performance reduction at the low SNR(Signal-to-Noise Ratio) that is the disadvantage of the non-linear equalizer. In the frequency-domain, when QAM signals, consisting of in-phase components and quadrature (out-phase) components, are sent over the complex channel, the only in-phase and quadrature components of signals distorted by the multipath fading are changed the same as signals distorted by the noise. So the cross components are canceled in the frequency-domain equalizer. The time-domain equalizer and the adaptive algorithm that has lower-error probability and fast convergence speed are applied to compensate for the error that is caused by canceling the cross components in the frequency-domain equalizer. In the time-domain, To compensate for the performance of frequency-domain equalizer the time-domain equalizes the distorted signals at a frame by using the Gold-code as a training sequence in the receiver after the Gold-codes are inserted into the guard signal in the transmitter. By using the proposed equalization method, we can achieve faster and more efficient equalization method that has the reduced computational complexity and improved performance.

  • PDF

The design of the matched filter for CDMA rapid initial PN code synchronization acquisition using HW reuse scheme (CDMA 고속초기동기획득을 위한 HW 재사용에 의한 정합필터의 설계)

  • Lim, Myoung-Seob
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.28-36
    • /
    • 1998
  • In the CDMA mobile communication system with asynchronous mode among base stations, the initial PN code acquisition method using a matched filter can be considered for the rapid PN code synchronization acquisition in the handoff region. In the model of the noncoherent QPSK/DS-SS under the Rayleigh fading channel, the mean acquisttion time of the matched filter is analyzed to have a shortened time in proportion to the length of matched filter to be compared with the serial correlation method. In this paper to improve the HW complexity of the conventional matched device which enables the repeated correlation process, is designed and its function is verified through the FPGAsimulation using Altera MaxPlus Ⅱ.

  • PDF

Performance Comparison of Space-Time Block Coding in High-speed Railway Channel (고속 철도 채널 환경에서 시공간 블록 부호 성능 비교)

  • Park, Seong-Guen;Lee, Jong-Woo;Jeon, Taehyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.291-297
    • /
    • 2014
  • Due to the rapid increase in demand for transportation of human and freight in modern railway systems, the CBTC system has been proposed, which is the solution for improvement of the line capacity that has been limited by the conventional track circuit based train control system. In the CBTC system, higher reliability of the communication system should be guaranteed for the safety of passengers and trains. However, due to the inherent characteristics of the wireless channel environment, performance degradations are inevitable. The diversity techniques can increase the reliability of data transmission using multiple antennas. In this paper, we investigate the performance of the STBC in the railway channel environment. Rician fading model is used for the viaduct scenarios which take important roles in the railway system. Also, considered is the Doppler effect which is an important factor in the mobile communication system. Simulations are performed to analyze the performance of the STBC in various channel environments. Results show that the performance degradation due to the phase error in viaduct scenarios is independent of the diversity order but is affected by the constellation of the modulation.