• Title/Summary/Keyword: Rapid cooling by air

Search Result 49, Processing Time 0.028 seconds

Performance Comparison of Liquid-Cooling with Air-Cooling Heat Exchangers Designed for Telecommunication Equipment

  • Jeon, Jong-Ug;Choi, Jong-Min;Heo, Jae-Hyeok;Kang, Hoon;Kim, Yong-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.2
    • /
    • pp.64-69
    • /
    • 2008
  • Electronic and telecommunication industries are constantly striving towards miniaturization of electronic devices. Miniaturization of chips creates extra space on PCBs that can be populated with additional components, which decreases the heat transfer surface area and generates very high heat flux. Even though an air-cooling technology for telecommunication equipment has been developed in accordance with rapid growth in electrical industry, it is confronted with the limitation of cooling capacity due to the rapid increase of heat density. In this study, liquid-cooling heat exchangers were designed and tested by varying geometry and operating conditions. In addition, air-cooling heat exchangers were tested to provide performance data for the comparison with the liquid-cooling heat exchangers. The liquid-cooling heat exchangers had twelve rectangular channels with different flow paths of 1, 2, and 12. Silicon rubber heaters were used to control the heat load to the heat exchangers. Heat input ranged from 293 to 800W, and inlet temperatures of working fluid varied from 15 to $27^{\circ}C$. The heat transfer coefficients were strongly affected by flow conditions. All liquid-cooling heat exchangers showed higher cooling performance than the air-cooling heat exchanger. The heat exchanger with 2-paths could provide more controllability on the maximum temperature than the others.

Experimental Study on the Rapid Cooling System by Refrigerant Storage Method (냉매 저장방식에 의한 쾌속 냉각장치에 대한 실험적 연구)

  • 장기태;고준석;정상권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.937-942
    • /
    • 2003
  • In the present study, low-temperature low-pressure refrigerant storage method is proposed to achieve higher cooling capacity during a short period of time than that of a compressor in steady operation. Experimental apparatus was designed and set up to analyze the performance of the new-conceptual cooling system. Two reservoirs for sequential storage of refrigerant were used in the cooling system. Several on/off solenoid valves were installed for control of refrigerant flow. From the experimental results, the initial rapid cooling by low temperature low-pressure refrigerant storage method was ascertained for successful operation. This rapid cooling methodology shall be useful for other low-capacity refrigeration system.

Performance Characteristics of Liquid-Cooling Heat Exchangers with MPCM Slurry Designed for Telecommunication Equipment (MPCM을 적용한 액냉형 냉각기의 성능 특성에 관한 연구)

  • Jeon, Jong-Ug;Kim, Yong-Chan;Choi, Jong-Min;Hyun, Dong-Soo;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.710-717
    • /
    • 2007
  • Electric and telecommunication industries are constantly striving towards miniaturization of electronic devices. Miniaturization of chips creates extra space on PCBs that can be populated with additional components, which decreases the heat transfer surface area and generates very high heat flux. Even though an air-cooling technology for telecommunication equipment has been developed in accordance with rapid growth in electrical industry, it is confronted with the limitation of cooling capacity due to the rapid increase of heat density. In this study, liquid-cooling heat exchangers with MPCM slurries were designed and tested by varying geometry and operating conditions. The liquid-cooling heat exchangers with 4-paths showed higher cooling performance than the others. The cooling performance of liquid cooling heat exchanger with MPCM slurries was more enhanced than that of the air cooling system. It's performance was also slightly superior to that of the water cooling system at the inlet temperature of $19^{\circ}C$.

Design and Performance Test of Cooling-Air Test Equipment for the Environmental Control System in Aircraft (항공기 ECS 냉각공기 시험장비 설계 및 성능 시험)

  • So, Jae-uk;Kim, Jin-sung;Kim, Jae-woo;Kim, Jin-bok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.147-154
    • /
    • 2021
  • In this paper, the configuration and design of the test equipment are presented to examine the impact of rapid temperature change in cooling-air that may occur during the operation of the fixed wing aircraft Environmental Control System (ECS) on avionic electronic equipment. At the start of the ECS, the temperature of the air supplied by the aircraft ECS may be increased to 5.0℃ per second. In order to ensure operating of the avionic electronic equipment that is mounted on the aircraft and receives cooling-air from the ECS, testing equipment that can implement the cooling-air characteristic test environment is required. During design of test equipment was verified cooling-air rapid rate of temperature change by performing a thermal/flow analysis, performance of the test equipment implemented was verified by applying an avionic electronic equipment.

Fabrication and Characteristics of Thermal Sprayed Ni-Cr-B-Si System Amorphous Coatings (Ni-Cr-B-Si계 비정질 용사피막의 제조 및 특성)

  • 정하윤;김태형;박경채
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.53-59
    • /
    • 1999
  • Amorphous alloys have also been called glassy alloys or non-crystalline alloys. They are made by the rapid solidification. The solidification occurs so rapid that the atoms are frozen in their liquid configuration. There are unique magnetic, mechanical, electrical and corrosive behaviors which result form their amorphous structure. In the study. amorphous coatings were manufactured with Ni-Cr-B-Si powders by flame spray. Measurement of hardness, were resistance, corrosion resistance and observation of microstructures and XRD, DSC were performed to investigate characteristics of amorphous coatings. The experimental results obtained as follow: 1) Amorphous powders could not be manufactured with the spraying in the spraying in the liquid nitrogen. But, amorphous coatings could be manufactured with the rotation cooling method by liquid nitrogen. In the fabrication of amorphous coatings, major factor was the rapid cooling by rotation of the substrate. 2) Hardness of coatings was obtained Hv 960 by formation of amorphous phase. But, wear resistance decreased. That was due to porosity in the coatings by the rapid cooling. 3) In the case of corrosion resistance, amorphous coatings were superior to air-cooled coatings. That was due to formation of amorphous phase. 4) After amorphous coatings were heat-treated at 520℃ for 1hr. hardness increased 80% and wear resistance increased 30% comparing with air cooled coatings. These were due to crystallization of amorphous phase and decrease of porosity by heat-treatment.

  • PDF

Minispangling of a Hot Dip Galvanized Sheet Steel by a Solution Spray Method (수용액 분사법에 의한 용융아연 도금강판의 미니스팡글 형성)

  • 김종상;전선호;박정렬
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.3
    • /
    • pp.149-157
    • /
    • 1994
  • The formation of spangles on a hot dip galvanized sheet steel by spray cooling the molten zinc coating with air, water and 2.0wt% $NH_4H_2PO_4$ solution has been studied performing laboratory experiments, and their coating properties have been evaluated. Minimized spangles were easily formed by mist spraying the solution for 1 second at the low nozzle spray pressure onto the molten zinc at 420~$422^{\circ}C$ because the solute $NH_4H_2PO_4$ in the sprayed solution imparted a highly rapid cooling effect to the coating through its endothermic de-composition reactions and because the decomposed products acted as numerous nucleation sites for the mini-mized spangles on the coating. Good surface appearances sand sound coating properties were obtained on this coating. Only regular spangles were formed on the coating by the forced convective air cooling. At the high nozzle spray pressure, zero spangles were formed on the coating by the pure water spray cooling. However, the coating had a dull and rough surface with craters sand cracks.

  • PDF

A Study on Fundamental Properties of Rapid Cooling Slag to Utilize as Fine Aggregate for Concrete (콘크리트용 잔골재로 활용하기 위한 습식 급랭 전로슬래그의 기초 물성에 관한 연구)

  • Choi, Yun-Wang;Choi, Byung-Keol;Oh, Se-Wang;Cho, Bong-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.171-179
    • /
    • 2015
  • Recently, development of substitution aggregate is urgently needed because aggregate shortage is continuing due to the exhaustion of natural aggregate and strict restrictions of environment in construction industry. Therefore, In this study, new processing method to solve the problems of processing method of existing converter slag, namely, rapid cooling slag produced by the rapid cooling and crushing process of the high temperature melten slag into the rotary drum and then using the cooling water, compressed air and steel ball was examined fundamental properties for utilize as fine aggregate for concrete. In addition, through this study, we propose the utilization method of rapid cooling slag as fine aggregate for concrete.

A Study on the Regional Energy Conservation Effects of a Multi-stage Outdoor Air Enabled Cooling System in a Data Center (데이터센터용 멀티 외기이용 냉방시스템의 지역별 에너지 절감효과에 대한 연구)

  • Park, Moon-Ki;Chang, Hyun-Jae
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.1
    • /
    • pp.71-80
    • /
    • 2017
  • A Data center houses a large number of server computers, storage and etc in racks. With the rapid increase of heat generation rates per rack in a data center, energy consumption rates for cooling have been increased year by year. In this study, energy conservation effects of a MOA (multi-stage outdoor air enabled) cooling system in a data center has been investigated when it is applied to 5 different locations, Korea. As results, Energy conservation effects of the MOA cooling system was achieved at about 20% to 30%. Humidifier operation time was 40 to 55 days when supply air temperature was maintained at 13, and humidity condition was kept within the allowed range even though humidifier was off. Furthermore, humidification was not needed when supply air temperature was maintained at $25^{\circ}C$. In selected 5 locations in Korea, the difference of regional climatic conditions affected no more than 5% in cooling energy consumption rates.

Rapid Cooling Mechanism Utilizing Acoustic Streaming Generated by Ultrasonic Vibrations (초음파 진동에 의해 발생된 음향유동을 활용한 급속냉각 메카니즘)

  • Loh, Byoung-Gook;Kwon, Ki-Jung;Lee, Dong-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1057-1066
    • /
    • 2006
  • Acoustic streaming Induced by longitudinal vibration at 30 kHz is visualized for a test fluid flow between the stationary glass plate and ultrasonic vibrating surface with particle imaging velocimetry (PIV) To measure an increase in the velocity of air flow due to acoustic streaming, the velocity of air flow in a gap between the heat source and ultrasonic vibrator is obtained quantitatively using PIV. The ultrasonic wave propagating into air in the gap generates steady-state secondary vortex called acoustic streaming which enhances convective cooling of the stationary heat source. Heat transfer through air in the gap is represented by experimental convective heat transfer coefficient with respect to the gap. Theoretical analysis shows that gaps for maximum heat transfer enhancement are the multiple of half wavelength. Optimal gaps for the actual design are experimentally found to be half wavelength and one wavelength. A drastic temperature variation exists for the local axial direction of the vibrator according to the measurement of the temperature distribution in the gap. The acoustic streaming velocity of the test fluid in the gap is at maximum when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which are specifically 6 mm and 12 mm.

An overview of Geothermal heat pumps as energy efficient and environmental friendly systems

  • Ahmad, Bilal;Kim, Dong-Hwan;Bahk, Sae-Mahn;Park, Myung-Kyun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.294-298
    • /
    • 2008
  • The major threats that human being is facing nowadays are the Climate change, depletion of the fossil fuels at a rapid rate and energy costs. A significant portion of world energy consumption is consumed by domestic heating and cooling. And heat pumps, due to their higher utilization efficiencies as compared to conventional heating and cooling systems, offer an attractive solution to this problem. Among the types of heat pumps, the Geothermal heat pump or Ground-source heat pump is a highly efficient, renewable energy technology for space heating and cooling. The Ground-source heat pump uses the Earth as a heat sink in the summer and a heat source in the winter. And the Earth, having a relatively constant temperature, warmer than the air in winter and cooler than the air in summer, offers an excellent heat source in winter and heat sink in summer.. This paper will discuss an overview of the types of heat pumps, its operation, benefits of using geothermal heat pumps, soil characteristics, and overview of some experimental works. Finally it will briefly discuss the opportunity of using these energy efficient systems (EES) in the HVAC market of South Korea.

  • PDF