• Title/Summary/Keyword: Rapid charger

Search Result 30, Processing Time 0.032 seconds

Parallel Operation Method of Multi Function Rapid-Charger with an Active Power Filter (능동전력필터 기능을 갖는 다기능 준급속 충전기의 병렬운전 기법)

  • Bae, Sung-Hoon;Choi, Seong-Chon;Shin, Min-Ho;Song, Sang-Hoon;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.534-535
    • /
    • 2014
  • This paper proposes parallel operation of multi function rapid-charger with an active power filter. Rapid-charger can be installed in public institutions or mart parking lot. But conventional charger has disadvantage that it can not be used as the active power filter in charging mode with only one charger. So using 3-parallel operation, effective mode transfer between battery charging and APF function can obtain effect of harmonic compensation and improving the utilization of the charger.

  • PDF

Rapid Charger for 48V Lead-acid Battery (48V용 납축전지 급속 충전기)

  • Ahn, S.H.;Jang, S.R.;Ryoo, H.J.;Mo, S.C.;Oh, S.W.;Park, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.945_946
    • /
    • 2009
  • This paper describes the development of the rapid battery charger for lead-acid battery. Due to heat which is caused by increased internal resistance during charging, it is difficult to increase charging current for the lead-acid battery. In this paper, the rapid charging algorithm which apply short discharging pulse current during charging procedure is developed and it makes the ion layer, which is generated during charging time, disappeared into electrolyte. The prototype battery charger based on resonant converter is developed for 48V battery charger and test procedure is introduced.

  • PDF

A Study on Development of 1.5 [kW] Low-cost Battery Charger for NEVs(Neighborhood Electric Vehicles) (NEV용 1.5[kW]급 저가형 충전기 개발에 관한 연구)

  • Lee, Chan-Song;Jeong, Jin-Beom;Lee, Baek-Haeng;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.574-579
    • /
    • 2012
  • In this paper, the battery charger developed which is satisfy by the characteristics of the rapid control and reduce the cost of the charger. analog-digital mixed mode controller developed with dedicated IC for PWM control and low-performance micro-processor is using for the operation control of charger. The low-cost NEV charger developed to verify the performance and usability is verified with charging battery experiment by of using developed charger.

The 10kW Rapid Battery Charger for Electric Vehicle with Active Power Filter Function (능동전력필터 기능을 갖는 전기자동차용 10kW급 준급속 배터리 충전기)

  • Choi, Seong-Chon;Song, Sang-Hoon;Kim, Do-Yun;Kim, Young-Real;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.122-133
    • /
    • 2014
  • This paper deals with the rapid charger which is the mid-type between the slow and fast chargers in the aspect of charging time. In its functions, it can perform the Active Power Filter(APF) function without changing the topology besides the charging function. In addition, to perform the charging and APF function, this paper proposes the mode selection algorithm. The operation of the charger that has APF function and the mode selection algorithm are verified by the simulation and experiment.

Peak Load Compensation Control Method of 10kW Rapid charger for Electric Vehicle (V2G를 고려한 전기자동차용 충전기의 피크부하보상 제어 기법)

  • Choi, Seong-Chon;Choi, Ga-Gang;Jung, Doo-Young;Lee, Woo-Won;Lee, Su-Won;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.150-151
    • /
    • 2012
  • The utility grid has a supply of electric energy which is larger than the usually required power consumption under peak load condition. So, power distribution is required to have a heavy capacity because of peak-load period. To solve the problem, this paper proposes a 10kW rapid charger system which has a function of load compensation at the peak-load condition. The proposed system supplies power demanded by peak-load through transferring energy in the battery of electric vehicle to the grid. V2G operation is verified through simulation performed by 10kW rapid-charger.

  • PDF

An Study for reuse of the waste lead battery using Pulse Charger with mode conversion type (모드 전환형 펄스충전기론 이용한 폐납축전지 재활용에 관한 연구)

  • Shin, Choon-Shik;An, Young-Joo;Kim, Sang-Dong;Shin, Young-Mi;Kim, Jong-Dal;Kim, Dong-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.101-107
    • /
    • 2007
  • In this paper, the pulse charger with mode consersion type is proposed that can reuse the waste lead battery. The pulse charger uses the switch mode of the forward convert method. The pulse charger maintain the constant voltage in state removing the lead battery and when it connected the pulse charger, it is converted the charge mode of the constant current immediately. It continues the rapid charge until the full state of the lead battery. After that the pulse charger is converted to the charge mode of constant voltage automatically, and then it continues the normal charge. The experiment results show that the effectiveness of pulse charger such as the good performance and the prolonged durability in lead battery according to capacity states.

  • PDF

A New DC-DC Converter Topology For High-Efficiency Electric Vehicle Rapid Chargers (전기전동차 급속충전기 고효율화를 위한 새로운 DC-DC 컨버터 토폴로지)

  • Kim, Jin-Hak;Lee, Woo-Seok;Choi, Seung-Won;Lee, Jun-Young;Lee, Il-Oun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.182-189
    • /
    • 2018
  • LLC resonant converters or phase-shift full-bridge converters have been widely used as DC - DC converters for rapid charging of electric vehicles (EVs). However, these converters present critical disadvantages, including a large circulating current, which can hinder efficiency and miniaturization in EV battery charger applications. In this paper, a new DC - DC converter topology is proposed for EV rapid chargers. The proposed converter can operate at high frequency despite a high rated power capacity of over 20kW, and the problem of circulating current can be minimized during the entire battery charging time. Owing to these advantages, the proposed converter can achieve a high conversion efficiency of over 97% for EV rapid charger applications. The performance of the proposed converter is verified with 20kW prototypes in this study.

Development of Voltage Regulator and Pulse Charger Using Pulse Current for Reuse of the Waste Lead Acid Battery (폐납축전지 재활용을 위한 펄스전류에 의한 전압조정기와 펄스충전기의 개발)

  • Shin, Choon-Shik;An, Young-Joo;Kim, Dong-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.2
    • /
    • pp.65-73
    • /
    • 2007
  • In this study, the pulse charger and voltage regulator are proposed that can reuse the waste lead acid battery. The first we develop the voltage regulator that can reuse the waste lead battery. And the pulse current is applied to the terminal of the waste lead acid battery. The voltage regulator is available principle of the pulse current which can reduce the sulfate to incipient material such as Pb and PbO2. Therefore the internal resistance of the lead acid battery is decreased, the performance of the lead acid battery is improved and the durability is prolonged. The second we develop the pulse charger using the voltage regulator. The pulse charger uses the switch mode of the forward convert method. The pulse charger maintain the constant voltage in state removing the lead acid battery and when it connected the pulse charger, it is converted the charge mode of the constant current immediately. It continues the rapid charge until the full state of the lead acid battery. After that the pulse charger is converted to the charge mode of constant voltage automatically, and then it continues the normal charge. The experiment results show that the effectiveness of the voltage regulator and pulse charger such as the good performance and the prolonged durability in lead acid battery of the small and large capacity.

Design and Implementation of Charger Monitoring System Based on CAN Protocol (CAN 통신 기반 충전 모니터링 시스템 설계 및 구현)

  • Choo, Yeon-Gyu;Kim, Hyun-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.541-548
    • /
    • 2012
  • On this paper, we proposed a design rule of charger monitoring system which allow us to watch the charging status and verify it for building the electric chargers infrastructure by spread of electric vehicle. Gathering the charging status of battery by proposed system makes us to enhance the charging algorithm, to interface with BMS(Battery Management System) of electric vehicle, to control the charging process with users. Because the technology of rapid charging is dependant upon various factors such as a performance and stability of battery. We proposed the monitoring system of rapid charger based on CAN protocol that can watch a working status of rapid charger including the charging status of battery with real time and can reduce the charging time of battery with optimized status. We also implement it and evaluate its performance.

Application of A High Voltage Capacitor Charger to Nanosize Powder Production

  • Jeong I.W.;Rim G.H.;Jung Y.H.;Kim K.S.;Lee H.S.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.727-730
    • /
    • 2001
  • Electrical wire explosion (EWE) is characterized by great current density and rapid metal heating, which make itself an ideal tool for nano-materials manufacturing technology. The EWE requires a high voltage electric-energy source. In the current experimental set-up a high voltage capacitor is used for the purpose. Hence, a power supply that is capable of charging the capacitor to a target voltage is required. One of the special requirements is the precise controllability of the stored energy level in the capacitor. Through this study a high voltage capacitor charger using a series resonant converter technology has been developed for the production of nanosize powder. A load capacitor of $32{\mu}F$ can be charged up to 20kV by the developed capacitor charger and discharged through a gap switch and a copper wire.

  • PDF