• Title/Summary/Keyword: Rapid bioassessment

Search Result 5, Processing Time 0.022 seconds

Development of Simple Benthic Macroinvertebrates Index (SBMI) for Biological Assessment on Stream Environment (하천환경의 생물학적 평가를 위한 간이저서동물지수(SBMI)의 개발)

  • Kong, Dongsoo;Min, Jeong-Ki;Noh, Seong-Yoo
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.5
    • /
    • pp.514-536
    • /
    • 2018
  • GPI (Group Pollution Index) using 29 indicator groups of Korean benthic macroinvertebrates was proposed in 1992, a higher category taxa-level index developed for rapid field assessment of organic water pollution. This study was performed to revise the assessment scheme of GPI based on taxonomic performance and ecological information accumulated since 1992. The original GPI was renamed SBMI (Simple Benthic Macroinvertebrates Index), and SBMI was based on saprobic valency of 26 indicator groups composed of higher category taxa (mainly family ~ phylum) excluding some genus or species-level taxa. SBMI revealed highly significant correlation with concentration of 5-day biochemical oxygen demand ($BOD_5$) (correlation coefficient r = 0.78, n = 569 sites), total suspended solids (r = 0.69), and total phosphorus (r = 0.77). Also, SBMI revealed strong correlation with Shannon-Weaver's species diversity (r = -0.85), Margalef's species richness (r = -0.85), and McNaughton's dominance (r = 0.83). Determination coefficient of SBMI to concentration of water quality items and values of community indices such as species diversity was 3 ~ 8 % and approximately 11 ~ 14 % higher than that of GPI, respectively. Correlation between SBMI and water quality factors or community indices such as species diversity did not reveal much difference compared to that of species-level indices, such as BMI (Benthic Macroinvertebrates Index) and ESB (Ecological Score of Benthic Macroinvertebrates). SMBI is a simple-qualitative index with higher category taxa easily identified, and is applicable for rapid field assessment of water environment impairment.

biotic Indices as Assessment tools of Water Quality in the Han River System, Korea (생물지수를 이용한 북한강 수계에서의 생물학적 수질 평가)

  • 정평림;정영헌;어성준;김재진;최선근
    • The Korean Journal of Ecology
    • /
    • v.21 no.6
    • /
    • pp.759-770
    • /
    • 1998
  • biotic indices scoring with the benthic macroinvertebrates were assessed as pollution monitoring tools in the north branch of the Han River system, Korea. We investigated the temporal variability of water quality at unpolluted, moderately polluted and heavily polluted sites using several biotic indices and assessed appropriate biological monitoring indices for lotic systems in Korea. The following biotic and chemical indices were employed in order to compare their applicability to the lotic systems : Trent Biotic Index (TBI), Chandler's Biotic Index-Average Score per Taxon (CBI-ASPT), Modified Biological Monitoring Working Party Score System-Average Score per Taxon (BMWP-ASPT), Hilsenhoff's biotic Index (BI) and Family-level Biotic Index (FBI) models for biotic analyses and National Sanitation foundation's Water Quality Index (NSFWQI) and comprehensive Chemical Pollution Index (Pb/n) for chemical analyses of water quality. Index and score values were compared with each other and with 24 water chemistry parameters. All biotic indices were significantly auto-correlated (p<0.001) and BI and FBI/ROK among them were highly correlated (r=0.84). BI and BMWP-ASPT models were also highly correlated with NSFWQI, while TBI values showed high correlation with the Pb/n. The BI and BMWP-ASPT were highly correlated with the most water chemistry parameters. We conclude that the BI model, which includes indicator species and abundance of taxa, is best suited for the bioassessment of lotic systems in Korea. For rapid field-based assessments, FBI/ROK and BMWP-ASPT models are also appropriate.

  • PDF

Ecological Assessments of Aquatic Environment using Multi-metric Model in Major Nationwide Stream Watersheds (우리나라 주요하천 수계에서 다변수모델을 이용한 생태학적 수환경 평가)

  • An, Kwang-Guk;Lee, Jae-Yon;Bae, Dae-Yeul;Kim, Ja-Hyun;Hwang, Soon-Jin;Won, Doo-Hee;Lee, Jae-Kwan;Kim, Chang-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.796-804
    • /
    • 2006
  • The objective of this research was to develop ecological multi-metric models using natural fish assemblages for a diagnosis of current stream health condition, and apply the model to nationwide lotic ecosystems of the Geum River, the Youngsan River, and the Sumjin River. The ecological stream health model was based on the index of biological integrity (IBI), which was originally developed in North American streams by Karr (1981), and the Rapid Bioassessment Protocol (RBP), which was scientifically established by the US EPA (1999). The metric numbers and metric attributes were partially changed for the regional applications, so the scoring criteria was modified for the assessment. Overall, metric values, based on the IBI calculations, reflected conventional water quality characteristics, based on nutrient regime, and agreed with results of staticeco-toxicity tests. Some stations impaired in terms of stream health were identified by the IBI approach, and also major key stressors affecting the stream health were identified by additional evaluations of physical habitats. Our preliminary results suggested that biological integrity in stream ecosystems was largely disturbed by habitat degradation as well as chemical pollutions. This new approach would be used as a key tool for ecological restorations and species conservations in the degraded aquatic ecosystems in Korea and applied for elucidating major causes of ecological disturbances. Ultimately, this approach provides us an effective management strategy of stream ecosystems through establishments of ecological networks in various watersheds.

Development of Benthic Macroinvertebrates Family-Level Biotic Index for Biological Assessment on Korean Stream Environment (한국의 하천환경 평가를 위한 저서성 대형무척추동물의 과 범주 생물지수 개발)

  • Kong, Dongsoo;Min, Jeong-Ki;Noh, Seong-Yoo
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.152-164
    • /
    • 2019
  • In this study, a Benthic Macroinvertebrates Family Index (BMFI) was developed using 100 indicator groups (99 families including Chironomidae with 2 phena). Families were assigned a score between 1 and 10 depending on their sensitivity to organic pollution. The BMFI was composed of the sensitivity and relative abundance of the indicator taxa. Sensitivity values of each group were generally similar to Biological Monitoring Working Party (BMWP) scores or Walley, Hawkes, Paisley, Trigg (WHPT) scores of UK, Japanese BMWP scores, and the FBI tolerance values of North America. However, sensitivity values of some taxa were significantly different from those of foreign countries, which seemed to have resulted from discrepancy in species composition, difference of taxonomic classification system, or methodological difference for estimation of sensitivity. As an annual average level, BMFI showed significant correlation with concentration of 5-day biochemical oxygen demand (BOD5) (correlation coefficient r = -0.80, n = 569 sites), total suspended solids (r = -0.68), and total phosphorus (r = -0.79). In addition, BMFI revealed strong correlation with Shannon-Weaver's species diversity (r = 0.85), Margalef's species richness (r = 0.85) and McNaughton's dominance (r = -0.84). Correlation between BMFI and water quality parameters or community indices such as species diversity did not show significant difference compared to that of species-level indices such as BMI (Benthic Macroinvertebrates Index). This means that BMFI is a more useful indicator in terms of easy identification of organisms. BMFI was used to assess the environmental status of 3,017 sites of Stream Ecosystem Survey conducted by the Korean Ministry of Environment between 2016 and 2018. As a result, about half of all sites appeared to be in good condition, and a quarter in poor condition.

Rapid Bioassessments of Kap Stream Using the Index of Biological Integrity (생물보전지수(Index of Biological Integrity)의 신속한 생물평가 기법을 이용한 갑천 수계의 평가)

  • Yeom, Dong-Hyuk;Lee, Sung-Kyu;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.4
    • /
    • pp.261-269
    • /
    • 2001
  • The purpose of present study was to introduce a multimetric approach, so called the Index of Biological Integrity (IBI) as a tool for evaluations of water environments. We used 11 metric systems for the IBI to evaluate stream conditions, based on the fish community, and modified 5 original metric attributes suggested by Karr (1981). Overall IBI values in Kap Stream averaged 36 (n = 5) and ranged 17${\sim}$49, indicating a 'fair condition' according to the modified criteria of Karr (1981) and U.S. EPA (1993). However, there were distinct differences in the IBI values among 5 study sites. The IBI values at sites 1, 2, and 3 were 49, 45, and 41, which indicated 'good${\sim}$excellent', 'good', and 'fair' condition, respectively, while values at sites 4 and 5 were 17 and 29, which indicated 'very poor' and 'poor', respectively. The minimum IBI at site 4 was probably due to continuous inputs of wastewater from wastewater disposal plants. The condition at site 4 resulted in predominance of tolerant species (50%), omnivore species (50%), and high abnormalies (43%). In the mean time, the IBI value at site 5, located near 5km downstream from the site 4, increased compared to that of site 4, and this seemed to be a result of recovery of water quality as the polluted water goes downward. We believe that present bioassessment methodology of IBI applied in this study may be used as a key tool to set up specific goals for stream restoration plans and dentify recovery levels of lotic ecosystems after restoration activities(i.e., prevention of point-source pollutant input, restoration of physical habitats, construction of riparian vegetation) as well as a biological measure diagnosing current stream conditions.

  • PDF