• 제목/요약/키워드: Rapid Small Scale Column Test (RSSCT)

검색결과 3건 처리시간 0.019초

고도정수처리용 Filter/Adsorber Granular Activated Carbon 특성 평가: 마모지수, floater, water-soluble ash 및 흡착특성 평가 (Evaluation on Filter/Adsorber Granular Activated Carbon using in Advanced Drinking Water Treatment: Abrasion number, Floater, Water-soluble ash, and Adsorption characteristics)

  • 박병주;도시현;김태양;홍성호
    • 상하수도학회지
    • /
    • 제30권1호
    • /
    • pp.77-85
    • /
    • 2016
  • The characteristics of filter/adsorber granular activated carbon (F/A GAC) were investigated by measuring various parameters, which include surface area, pore volume, abrasion number, floater, and water-soluble ash. The correlation between parameters was also evaluated. Moreover, rapid small-scale column test (RSSCT) was conducted for adsorption characteristics. Thirteen F/A GAC were tested, and the average values of abrasion number and water-soluble ash were 88.9 and 0.15%, respectively. F/A GAC with the larger external surface area and greater mesopore volume had the lower abrasion number, which indicated that it was worn out relatively easily. Water-soluble ash of coconut-based GAC (about 2.6%) was greater than that of coal-based GAC (less than 1%), and the pH of solution was increased with GAC, which had the higher water-soluble ash. On the other hand, floater of thirteen F/A GAC was divided as two groups, which one group had relatively higher floater (2.7~3.5%) and the other group had lower floater (approximately 0.5%). The results of RSSCT indicated that coconut-based GAC (i.e. relatively higher water-soluble ash) had less adsorption capacity. Moreover, adsorption capacity of coal-based GAC with larger surface area and greater mesopore volume was superior to others.

RSSCT를 이용한 GAC의 상수원수 내 용존유기물질 제거 (Removal of Dissolved Organic Matters in Drinking Water by GAC adsorption using RSSCT)

  • 김영일;배병욱
    • 상하수도학회지
    • /
    • 제20권5호
    • /
    • pp.727-736
    • /
    • 2006
  • Granular activated carbon (GAC) has been identified as a best available technology (BAT) by the United States Environmental Protection Agency (USEPA) for removal disinfection by-product (DBP) precursors, such as dissolved organic carbon (DOC) and dissolved organic nitrogen (DON). Rapid small-scale column test (RSSCT) were used to investigate four types of carbon (F400, Norit1240, Norit40S, and Aquasorb1500) for their affinity to absorb natural organic matter (NOM). DOC, $UV_{254}$, and Total dissolved nitrogen (TON) concentrations were measured in the column effluent to track GAC breakthrough. DOC and $UV_{254}$ breakthrough occurred at around 3500 bed volumes (BVs) of operation for all GACs investigated. The $UV_{254}$ breakthrough curves showed 33% to 48% at 8000 BVs, when the DOC was 48% to 65%. All GACs showed greater removal in DOC than $UV_{254}$. The NORIT1240 GAC was determined to have the highest adsorption capacity for DOC and $UV_{254}$. The removal of nitrate (NOTN) had not broken through over BVs. The initial TON breakthrough curves were started around 50%, when the DOC breakthrough was only 10 % at 500 BVs. The curves were gradually increased after 3500 BVs and approximately 69% through 81% of TON breakthrough occurred at 8000 BVs. All of the GACs were able to remove TON, in the case of this investigation the majority of the TON was present as DON. Because nitrate nitrogen was seldom removed and ammonium nitrogen ($NH_3-N$) was not detected in the effluent from RSSCTs even though raw water. The carbon usage rate of DOC was from 2 to 6 times less than that of TON. The NORIT1240 GAC demonstrated the best performance in terms of DOC removal, while the F400 GAC was best in terms of TON removal. Excitation emission matrix(EEM) analysis was used to show that GAC adsorption successfully removed most of Humic-like DOC and Fulvic-like DOCs. However, soluble microbial product(SMP)-like DOC in the absence of raw water were detected in the NORIT40S and Aquasorb1500 GAC. The authors assumed that this results is due probably to the part of GAC in the RSSCT which was converted into biological activated carbon(BAC). To compare with organics removal by GAC according to preloading, the virgin GACs had readily accessible sites that were adsorbed DOC more rapidly than preloaded GACs, but the TDN removal had not showed differences between those GACs.

DOM의 분자량과 크기분포에 따른 입상활성탄 공정의 평가 (Evaluation of Granular Activated Carbon Process Focusing on Molar mass and size distribution of DOM)

  • 채선하;이경혁
    • 상하수도학회지
    • /
    • 제22권1호
    • /
    • pp.31-38
    • /
    • 2008
  • The primary objective of this study was to evaluate the variation of the molecular size distribution by granular activated carbon (GAC) adsorption. GAC adsorption was assessed by using the rapid small-scale column test (RSSCT) and high-performance size-exclusion chromatography (HPSEC) was used to analyze the molecular size distribution (MSD) in the effluent of GAC column. RSSCT study suggested that GAC adsorption exhibited excellent interrelationship between dissolved organic carbon (DOC) breakthrough and MSD as function of bed volumes passed. After GAC treatment, the nonadsorbable fraction which was about 25percents of influent DOC corresponded to the hydrophilic (HPI) natural organic carbon (NOM) of NOM fractions and was composed entirely of <300 molecular weight (MW) in the HPSEC at the initial stage of the RSSCT operation. The dominant MW fraction in the source water was 1,000~5,000daltons. At the bed volumes 2,500, MW <500 of GAC treated water was risen rather than it of source water. After the bed volumes 7,300 of operation, the MW 1,000~3,000 fraction was closed to about 80percents of DOC found in the GAC influent. The Number-average molecular weight (Mn) value determined using HPSEC for the effluent of GAC column was gently increased as DOC breakthrough progress. The quotient p(Mw/Mn) can be used to estimate the degree of polydispersity was shown greatest value for the GAC effluent at the initial stage of the RSSCT operation.