• Title/Summary/Keyword: Rapid Prototyping Manufacturing

Search Result 201, Processing Time 0.024 seconds

Development of Automatic Filling Process for Rapid Manufacturing by High-speed Machining Process (고속가공에 의한 쾌속제작용 자동충진 공정개발)

  • 신보성;양동열;최두선;이응숙;제태진;김기돈;이종현;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.28-31
    • /
    • 2001
  • Recently, in order to satisfy the consumer's demand the life cycle and the lead-time of a product is to be shortened. It is thus important to reduce the time and cost in manufacturing trial products. Several techniques have been developed and successfully commercialized in the market RPM(Rapid Prototyping and Manufacturing). However, most commercial systems currently use resins or waxes as the raw materials. So, the limited mechanical strength for functional testing is regarded as an obstacle towards broader application of rapid prototyping techniques. To overcome this problems, high-speed machining technology is being investigated worldwide for rapid manufacturing and even for direct rapid tooling application. In this paper, some fundamental experiments and analyses are carried out to obtain the filling time, materials, method, and process parameters for HisRP process. HisRP is a combination process using high-speed machining technology with automatic filling. In filling process, Bi58-Sn alloy is chosen because of the properties of los-melting point, low coefficient of thermal expansion and enviromental friendship. Also the use of filling wire is of advantage in term of simple and flexible mechanism. Then the rapid manufacturing product, for example a skull, is machined for aluminum material by HisRP process with an automatic set-up device of 4-faces machining.

  • PDF

Investigation into Net-Shape Manufacturing of Three-Dimensional Parts using VLM-SP and Its Applied Technology (연속형 가변 적층 쾌속 조형과 응용기술을 이용한 3차원 제품의 정형 가공에 관한 연구)

  • 안동규;이상호;양동열
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.500-508
    • /
    • 2001
  • The integration of Rapid prototyping (RP) and Rapid Tooling (RT) has the potential for rapid net shaping of thee-dimensional parts, which have a geometrical complexity. In this study, a new R)P process, (VLM-SP), was proposed to manufacture net shapes of three-dimensional prototypes and it was shown that VLM-SP is an effective and economic process through the comparison of building time, building cost and dimensional accuracy for the test parts with the commercial RP processes ; LOM and FDM. In addition, the metal parts, which are a spanner shape and a clover punch, were produced by the plaster casting as one of RT using the prototypes of VLM-SP.

  • PDF

The Manufacturing Technique of Metal Rapid Products by the Milling Process (절삭가공에 의한 금속 쾌속 시작품 제작기술)

  • 신보성;최두선;이응숙;이동주;이종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.759-762
    • /
    • 2000
  • In order to reduce lead-time and cost, recently the technology of Rapid Prototyping and Manufacturing (PR/M) has been used widely. So various RP/M methods have been developed and these systems commercialized several years ago. But we have carried out rapid product, such as sphere, by the milling process instead of RP system. in the case of sphere with three-dimensional shape. the machining method using conventional milling machine has resulted in some troubles because of its deformation and lack of stiffness which is due to usual work piece set up method. In this paper, the feasibility of milling process which is divided into two steps such as the-upper-and-1ower-face milling process using supporting material were investigated and suggested.

  • PDF

A Study on RP Part Production Using Intersecting Circle Approximation Method (교차다각형법에 의한 원 근사 방법을 적용한 RP Part 제작에 관한 연구)

  • 신근하
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.68-74
    • /
    • 2000
  • The STL file format is an approximation of 3-D model with triangular facets. STL is a standard input file format of Rapid Prototyping(RP) equipment In computer graphics a circle has been approximated with an inscribed polygon which causes an error between the real and approximated circles. In this study an intersecting polygon has been used to approximate the circle and applied to produce more accurate RP part. The newly proposed method shows it's excellence in part accuracy.

  • PDF

Application of Delaunay Triangulation on RP (Delaunay삼각형 분할법의 RP에의 응용)

  • 명태식;채희창;김옥현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.35-41
    • /
    • 1999
  • STL which is used in Rapid Prototyping is composed of a lot of triangular facets. The number of triangles and the shapes of these triangles determine the quality of STL. Therefore, proper algorithm is necessary to enhance the quality of triangular patch. In this paper we used the Delaunay triangulation method to apply to following processes. 1) On processing for reducing sharp triangles which cause errors on intersection. 2) On processing for connecting two or more collinear edges. 3) On processing for deleting unnecessarily inserted points in coplanar polygon.

  • PDF

광조형을 이용한 마이크로가공에 관한 기초적인 연구

  • 김동욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.161-165
    • /
    • 1996
  • Recently, with a great interest in micromachine, it is more and more important to promote the way of manufacturing micromachine. The silicon process or the LIGA process was the main way to manufacture micromachine in the past. Because these processing method was 2.5-dimensional, there was the limit in processing perfect three-dimensional micromachine. In this study, we developed the rapid prototyping system for micromachine and tested its property. We also realized .mu. m - order processing and three-dimensional structure processing. The results showed the possibility of manufacturing micromachine with the rapid prototyping system

  • PDF

Development of Automatic Filling Process using Low-Melting Point Metal for Rapid Manufacturing with Machining Process (절삭가공과 저융점금속에 의한 쾌속제작용 자동충진공정 개발)

  • Shin, Bo-Seong;Yang, Dong-Yeol;Choi, Du-Seon;Kim, Ki-Don;Lee, Eung-Suk;Je, Tae-Jin;Hwang, Kyeong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.88-94
    • /
    • 2002
  • Recently, the life cycle and the lead-time of a product are to be shortened in order to satisfy consumer's demand. It is thus important to reduce the time and cost in manufacturing trial products. Several technique have been developed and successfully commercialized in the market of RPM(Rapid Prototyping and Manufacturing). However, most commercial systems currently use resins or waxes as the raw materials. So, the limited mechanical strength for functional testing is regarded as an obstacle towards broader application of rapid prototyping techniques. To overcome these problems, high-speed machining technology is being investigated worldwide for rapid manufacturing and even for direct rapid tooling application. In this paper, some fundamental experiments and analyses are carried out to obtain the filling time, materials, method, and process parameters for HisRP(High-Speed RP) process. HisRP is a new RP process that is combined high-speed machining with automatic filling. In filling process, Bi58-Sn alloy is chosen as filling material because of the properties of low-melting point, low coefficient of thermal expansion and no harm to environment. Also the use of filling wire it if advantage since it needs simple and flexible mechanism. Then the rapid product, for example a skull, is manufactured for aluminum material by HisRP process with an automatic set-up device thor 4-faces machining.

Process developments for direct manufacturing of metallic prototypes (금속시제품의 신속제작을 위한 공정기술개발)

  • 송용억
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.605-609
    • /
    • 1996
  • In order to ensure that the prototype corresponds as closely as possible to the serial part subsequently to be manufactured, the materials used for the prototye should, wherever possible, be identical to those used in production. In case of metallic parts, however, this demand is still not completely fulfilled by the available Rapid Prototyping techniques. Since only conventional manufacturing processes caan currentlybe used to produce metallic prototypes directly, these are extremely cost and labor intensive. For this reason, work is being undertaken worldwide to develop Selective Laser Sintering (referred to SLS) and Laser Generating for direct manufacture of metallic parts. In this paper the results of both process developments are reported. As the present results show, they have great application potentials in prototyping tools, especially molds and dies.

  • PDF

Development of gear type grease lubricator by rapid prototyping (쾌속조형기에 의한 기어식 주유장치의 개발)

  • Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.46-53
    • /
    • 2014
  • An automatic grease lubricator provides an adequate amount of fresh grease constantly to any type of rotating machine to minimize friction heat and reduce friction loss. This study seeks to develop an automatic grease lubricator by means of rapid prototyping with a gear-driven mechanism and a controlled operation time. The ultimate design is to lubricate an adequate amount of grease by a simple dip-switch clicking mechanism according to an advanced set cycle. The backlash of the gear was minimized to increase the power, and to increase the power of the mechanism, the binding frequency and the thickness of the coil were changed. To control the rotation cycles of the main shaft according to certain set numbers, different resistances and chips were used in the design of the circuit which controls the electrical signals via a pulse. A digital mock-up was analyzed and the rapid prototyping (RP) trial products were tested with a PCB circuit and grease. An evaluation of the outlet capacity of RP trial products was conducted, as the friction caused by the outlet on the wall surface was an important factor in the operation of the equipment. Finally, a finishing process was applied to decrease the roughness of a surface to a comparable level to test the performance of the product.