• Title/Summary/Keyword: Rapid Lane Change

Search Result 6, Processing Time 0.019 seconds

A Study on the 4WS Control Method with the Effect of Steering Wheel Angular Velocity (핸들조향속도를 고려한 4WS 제어방법에 관한 연구)

  • 이영화;김석일;김대영;김동룡
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.168-175
    • /
    • 1996
  • Except the collision avoidance performance related to the rapid lane change, the 4WS vehicle has better dynamic stability and handling performance than the conventional 2WS vehicle which has close relation with the driver's safety, a 4WS conrol method with the effect of steering wheel angular velocity is proposed based on the fact that the driver steers abruptly the steering wheel to avoid the collision. And the effects of the proposed 4WS control method are investigated on the dynamic stability and handling performance by using the ISO lane change test code.

  • PDF

A Study on the Improvement of Pavement for Bus Rapid Transit System in Seoul (서울시 중앙버스전용차로 포장방법 개선방안 연구)

  • Bae, Yoon Shin;Kwon, Wan Taeg;Lee, Sang Yum
    • International Journal of Highway Engineering
    • /
    • v.16 no.4
    • /
    • pp.11-19
    • /
    • 2014
  • PURPOSES: This study is to suggest the improvement for bus rapid transit system in Seoul METHODS: The maintenance cost for bus lane damages and plastic deformations are increased by bus passing speed, heavy bus weight, and climate change (localized torrential downpour, subtropical climate) and the accident risk has been increased. RESULTS: Recent analysis of pavement damage indicates that bus lane damage caused by heavy weight is overwhelming and it is urgent to prepare countermeasures. CONCLUSIONS : Pavement data of bus rapid transit system, bus transit numbers and pavement damage elements were analyzed. By analyzing pavement maintenance, design and construction, the countermeasures for the improvement of bus lane pavement and effective maintenance were suggested.

Sliding Mode Control for an Electric Power Steering System in an Autonomous Lane Keeping System (자동 차선 유지 시스템의 전기식 파워 조향 시스템을 위한 슬라이딩 모드 제어기)

  • Yu, Jun Young;Kim, Wonhee;Son, Young Seop;Chung, Chung Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • In this paper, we develop a sliding mode control for steering wheel angle control based on torque overlay in order to resolve the problem of previous methods for Electric Power Steering (EPS) systems in the Lane Keeping System (LKS) of autonomous vehicles. For the controller design, we propose a 2nd order model of the electric power steering system in an autonomous LKS. The desired state model is designed to prevent a rapid change of the steering wheel angle. The sliding mode steering wheel angle controller is developed for the robustness of the disturbance. Since the proposed method is designed based on torque overlay, torque integration with basic functions of the EPS system for the steering wheel angle control is available for the driver's convenience. The performance of the proposed method was validated via experiments.

A Study on Suspension Optimization of the Korean Personal Rapid Transit Vehicle (한국형 PRT차량의 현가장치 최적화 연구)

  • Kim, Hyun Tae;Kim, Jun Woo;Cho, Jeong Gil;Koo, Jeong Seo;Kang, Seokwon;Jeong, Raggyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.317-326
    • /
    • 2016
  • In this study, running stability and ride quality analyses, applying the 'ISO 3888 (double lane change)' and 'ISO 2631-1' (mechanical vibration and shock) tests, were performed for the suspension optimization of the Korean personal rapid transit (PRT) vehicle. The suspension optimization results for running stability and ride quality were derived by applying the multiresponse surface method. From the comparisons of the optimization results for different ratios of the objective functions of running stability and ride quality, we derived the best objective function ratio of 3.9-to-6.1 to improve both the running stability and the ride quality. With the optimized results, the suspension stiffness became 30.68 N/mm, between the value of the $S_2$ and $S_3$ models, and the damping coefficient equaled that of the $D_1$ model. When compared with the suspension of the current PRT vehicle, the roll angle, yaw rate, sideslip angle, and ride comfort were improved by 0.37, 0.37, 2.8, and 5, respectively.

VENTILATION DESIGN OF UNDERGROUND PARKING AREA IN A NEW BUILDING USING CFD (CFD를 이용한 신축건물 내 지하주차장의 환기설계)

  • Kim, J.H.;Yang, S.Y.;Lee, G.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.59-63
    • /
    • 2007
  • With the recent increasing demand on the high-performance buildings, there has been a rapid growth in the application of the Computational Fluid Dynamics to the Building design. The conceptual ventilation design of the underground parking area currently under construction is validated using the CFD-ACE+. It has been found that the conceptual ventilation design quantitively satisfies the legal standards. However, the highly concentrated region of CO is predicted. The positions and blowing directions of ventilating lane are changed based on the previously predicted concentration distributions. The highly concentrated region of CO is slightly reduced, but not much change has been observed. Two more fang are installed and the positions and blowing directions of the fans are modified so that the highly concentrated region of CO is minimized.

  • PDF

Development of a Real-Time Video Image Tracking Algorithm for Incident Detection

  • Oh, Ju-Taek;Min, Joon-Young;Heo, Byung-Do;Kim, Myung-Seob
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.4
    • /
    • pp.49-60
    • /
    • 2008
  • The current VIPS are not effective in safety point of view, because they are originally developed for mimicking loop detectors. Therefore, it is important to identify vehicle trajectories in real time, because recognizing vehicle movements over a detection zone enables to identify which situations are hazardous, and what causes them to be hazardous. In order to improve limited safety functions of the current VIPS, this research has developed a computer vision system of monitoring individual vehicle trajectories based on image processing, and offer the detailed information, for example, incident detection and conflict as well as traffic information via tracking image detectors. This system is capable of recognizing individual vehicle maneuvers and increasing the effectiveness of various traffic situations. Experiments were conducted for measuring the cases of incident detection and abnormal vehicle trajectory with rapid lane change.

  • PDF