This study aims to estimate chlorophyll-a concentration in rivers using multi-spectral RapidEye imagery and Spectral Mixture Analysis (SMA) and assess the applicability of SMA for multi-temporal imagery analysis. Comparison between images (acquired on Oct. and Nov., 2013) predicted and ground reference chlorophyll-a concentration showed significant performance statistically with determination coefficients of 0.49 and 0.51, respectively. Two band (Red-RE) model for the October and November 2013 RapidEye images showed low performance with coefficient of determinations ($R^2$) of 0.26 and 0.16, respectively. Also Three band (Red-RE-NIR) model showed different performance with $R^2$ of 0.016 and 0.304, respectively. SMA derived Chlorophyll-a concentrations showed relatively higher accuracy than band ratio models based values. SMA was the most appropriate method to calculate Chlorophyll-a concentration using images which were acquired on period of low Chlorophyll-a concentrations. The results of SMA for multi-temporal imagery showed low performance because of the spatio-temporal variation of each end members. This approach provides the potential of providing a cost effective method of monitoring river water quality and management using multi-spectral imagery. In addition, the calculated Chlorophyll-a concentrations using multi-spectral RapidEye imagery can be applied to water quality modeling, enhancing the predicting accuracy.
북한과 같이 접근이 힘들고 농업과 관련된 정보가 부족한 지역을 대상으로 RapidEye 위성영상의 판독 및 분류를 통하여 가장 기초적인 농업 현황과 생산 기반인 논 면적을 산정하였다. 291개의 RapidEye 영상을 이용하여 북한 전역을 대상으로 시기별로 논을 분류하기 위한 영상 판독 기준을 설정하였다. 5월 초에서 6월 말은 벼 이앙을 위해 관개를 하기 때문에 벼 이앙 전후에 물의 특성이 위성영상에서 잘 관측되기 때문에 영상이 어둡게 보이는 점을 이용하여 논과 다른 토지이용을 구분한다. 주요 벼 생육시기인 7월 초부터 9월 말에는 RapidEye 영상을 5:3:2 밴드조합으로 하여 영상을 판독하면 벼논의 색상과 질감의 차이를 이용하여 밭작물, 초지, 산림으로부터 논을 분류한다. 9월 말부터 10월 말은 벼 수확을 한 후로 논에 식생이 없는 시기로써 5:3:2 밴드 조합에서 회색빛이 나는 경지 형태를 대상을 논으로 판독한다. 그 결과 북한 전역에 대한 논 분포지도를 작성하였고 시도 행정구역별로 논 면적을 살펴보았다. 대부분의 논은 평안남북도와 황해남도가 위치한 서해안 평야지대에 전체 논 면적의 66% 정도인 $3,521km^2$가 분포하였고 함경남북도, 강원도, 나선시와 같이 동해에 인접한 지역의 논 면적은 $1,172km^2$로 전체 논 면적의 약 20%를 차지하는 것으로 나타났다. RapidEye 영상을 이용하여 분류한 논 면적은 2001년 및 2010년 FAO/WFP 북한 보고서와 비교할 때 각각 1% 이내의 면적 편차를 나타내었다. RapidEye 위성영상을 이용한 북한의 논 분류 결과는 농경지 이용 면적의 산정과 변화, 벼 수량 추정을 위한 마스킹 (masking) 자료로 활용될 수 있는 기본 자료로 의미가 매우 큰 것으로 판단된다. 향후에는 밭에 대한 분류 지도를 구축하고 나아가 옥수수와 같은 주요 밭작물에 대한 판독 방법에 대해서도 연구할 필요가 있을 것으로 생각된다.
하천은 육지 표면에서 일정한 물길을 따라 흐르는 물줄기를 의미하며, 하천 매핑 작업은 하천유역의 지형 변화 연구 및 하천 유역의 홍수 모니터링 연구 등에 매우 중요한 역할을 한다. 그러나 하천의 수위변화로 인한 유역 내 지표면의 수위 및 유량의 불균일성 등으로 인하여, 기존의 지반조사 기술은 하천 매핑 작업에 효과적이지 않다. 공간 정보 자료는 해당 지역에 접근하지 않고도 해당 지역에 관한 지형적인 정보를 획득할 수 있어서, 하천 지형 조사 및 하천 측량 등 하천 유역의 지형연구에 굉장히 유용하게 쓰일 수 있다. 본 연구에서는, 각각의 다른 파라미터를 사용하여 영상분류 기법 중의 하나인 ISODATA(Iterative Self_Organizing Data Analysis) 분류기법을 적용하여 RapidEye 영상으로부터 하천을 추출하는 방법을 제시하였다. 우선, RapidEye 영상으로부터 NIR(Near InfraRed) 밴드 영상과 NDVI(Normalized Difference Vegetation Index) 영상을 생성한 뒤, 이를 각각의 파라미터로 설정한다. 생성된 각각의 영상에 ISODATA 기법을 적용한 뒤, 후처리 과정을 통하여 각각의 영상으로부터 하천을 추출하도록 한다. 각각의 영상에서 추출한 하천의 경계선 또한 Sobel 에지 추출 기법을 통하여 추출된다. 점검 점들을 이용하여 정확도 검증을 수행한 결과, NIR 밴드로부터 추출한 하천의 정확도가 NDVI 영상으로부터 추출한 하천의 정확도보다 더 높다는 것을 알 수 있다.
세계적 기후온난화와 이상기온현상으로 최근 급변하는 농업환경에 대응하기 위해서는 농작물 작황관리 및 예측시스템의 과학화를 통한 정부차원의 대처능력 개선이 시급하다. 농업분야에서 위성정보의 활용은 고해상도 광학 및 레이더 영상의 상용화와 더불어 정밀농업이라는 새로운 가능성을 열어주고 있다. 본 연구에서는 최근 농업분야에서 주목을 받고 있는 RapidEye 위성영상을 사용하여 우리나라 농촌지역의 토지이용유형별 분광식생지수의 시계열 특성을 살펴보았다. 식생과 비식생지역 간에 뚜렷한 시계열 변화양상이 나타났으며, 식생지역 내에서도 산림 수종별, 논 그룹별로 식생지수의 시계열 변화에 차이가 관찰되었다.
최근 생체 인식 분야나, HCI 분야 등에서 사람의 눈 영상 정보를 이용하여 홍채 인식을 하거나 시선위치 정보를 이용하는 연구가 활발히 진행 되고 있다. 특히 사용자의 편의성을 위한 원거리 카메라 기반시스템이 늘어나면서 눈 영상 촬영에 단순히 동공 중심 영역만 촬영 되는 것이 아니라, 눈썹, 이마, 피부영역 등 부정확한 검출을 일으킬 수 있는 요소가 포함되어 촬영되고 이러한 불필요한 요소들은 동공 중심영역의 검출 성능을 저하시킨다. 또한 앞서 얘기한 이용분야들은 실시간 환경에서 실행되는 시스템들로 정확한 검출 성능뿐만 아니라 빠른 실행시간도 요구 한다. 본 논문에서는 정확하고 빠른 눈동자 영역 검출을 위하여 기존에 가장 많이 사용하는 AdaBoost 눈 검출 알고리즘, 적응적 템플릿 정합+AdaBoost 알고리즘, CAMShift+AdBoost 알고리즘, rapid eye 검출 알고리즘에 대하여 분석하고, 조명변화와 콘택트 렌즈 및 안경 착용자와 미 착용자등 다양한 경우에 대해서 앞서 말한 알고리즘들을 적용하여 각 알고리즘 별로 정확도와 실행시간을 비교 분석하도록 한다.
In this study, Agricultural Infrastructures of Shincheon-gun in North Korea are investigated using Kompsat-2 and RapidEye satellite imagery. Target agricultural infrastructures are agricultural landuse, irrigation and drainage canals, dammed pools for irrigation and pumping stations. KOMPSAT-2 satellite imagery are use to investigate agricultural hydraulic structures and agricultural landuse are investigated by RapidEye Imagery. Geometric correction are performed using 28 GCP and QUAC method are used for atmospherical correction in all imagery. ISODATA clustering and naked-eye classification method are used for extracting agricultural hydraulic structures and Object-based analysis is applied to classifying the agricultural landuse. Extraction results of agricultural hydraulic structures and agricultural are presented and we suggest the applicability of satellite imagery to investigate agricultural infrastructures in North Korea.
안정적인 작물 생산을 위하여 국내 농업지역에 대한 효과적인 작황 모니터링 기법의 요구가 증대되고 있다. 본 연구에서는 작물 재배지역 추출을 위하여 딥러닝 기법을 이용한 분류 모델을 개발하고, 이를 위성영상에 적용하고자 하였다. 이를 위하여, 식생분석에 유용한 blue, green, red, red-edge, NIR 밴드를 포함하고 있는 RapidEye 위성영상을 이용하여 작물 재배지역에 대한 훈련자료를 구축하고, 이를 활용하여 국내 양파 및 마늘 작물에 대한 재배면적을 추정하고자 하였다. 대기보정된 RapidEye 위성영상을 활용하여 훈련자료를 구축하였으며, 작물지역의 분류를 위하여 대표적인 의미론적 분할을 위한 딥러닝 모델인 FC-DenseNet을 이용하여 딥러닝 모델을 생성하였다. 최종적인 작물 재배지역은 지적도와의 결합을 통하여 객체 기반의 자료로 생성하였다. 실험결과, 대기보정된 훈련자료를 이용하여 학습된 FC-DenseNet 모델은 훈련에 사용되지 않은 타 지역의 작물 재배지역을 효과적으로 검출할 수 있음을 확인하였다.
In this paper we suggested an automated method for detecting and counting rapid eye movement(REM) using EOG during sleep. This method is formulated by two step fuzzy logic. At first step, the velocity and the distance of single channel eye movement are used for the fuzzy input to get the possibility of being REM at each EOG. At second step, the two possibility values of both EOG from the first step and the correlation coefficient of both eye movements are used for the fuzzy logic input, and the output is the final possibility of being Rapid Eye Movement. We applied this algorithm to the normal and narcoleptic sleep data and compared the difference. We found the possibility that the count of REM can be a parameter that has significant physiological meanings.
Recently many developed countries have used satellite images for classifying cropland areas to reduce time and efforts put into field survey. Korea also has used satellite images for the same purpose since KOMPSAT-2 was successfully launched and operated in 2006, but still far way to go in order to achieve the required accuracy from the products. This study evaluated the accuracy of the calculated croplands by using the objected classification method with various satellite images including ASTER, Spot-5, Rapid eye, Quickbird-2, Geo eye-1. Also, their usability and effectiveness for the cropland survey were verified by comparing with field survey data. As results. Geo eye-1 and Rapid eye showed higher accuracy to calculate the paddy field areas while Geo eye-1 and Quickbird-2 showed higher accuracy to calculate the upland field areas.
The patients with myotonic dystrophy (MD) show ocular motor abnormalities including strabismus, vergence deficits, and inaccurate or slow saccades. Two theories have been proposed to explain the oculomotor deficits in MD. The central theory attributes the defects of eye movements of MD to the involvement of the central nervous system while the muscular theory attributes to dystrophic changes of the extraocular muscles. A 58-year-old woman with MD showed selective slowing of horizontal saccades and reduced peak velocities for both horizontal canals in head impulse tests, while smooth-pursuit eye movements and vertical head impulse responses were normal. This case suggests that the extraocular muscles-as a final common pathway of the voluntary saccade and reflexive vestibular eye movements-may better explain the defective rapid eye movements observed in MD.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.