• Title/Summary/Keyword: Rankine Cycle

Search Result 186, Processing Time 0.031 seconds

A Study of Closed OTEC Power Plants (폐쇄형 해양온도차발전 사이클에 관한 연구)

  • Shin, Sang-Ho;Jung, Dong-Soo;Kim, Chong-Bo;Seo, Tae-Beom;Chun, Won-Gee;Auh, P. Chung-Moo
    • Solar Energy
    • /
    • v.17 no.4
    • /
    • pp.23-33
    • /
    • 1997
  • In this paper, performance of various working fluids is evaluated for the closed Ocean Thermal Energy Conversion(OTEC) power plant operating on Rankine cycle. The evaporator and condenser are modeled via UA and LMTD method while turbine and pump are modeled by specifying isentropic efficiencies. R22, Propane, Propylene, R134a, R125, R143a, R32, R410A and Ammonia are used as working fluids. Results show that newly developed fluids such as R410A and R32 that do not cause stratospheric ozone layer depletion perform as well as R22 and ammonia. The superheat at the evaporator exit and subcooling at the condenser exit do not affect the performance of the simple OTEC power cycle. Turbine efficiency and heat exchanger size influence greatly the performance of the Rankine cycle. Finally, it was shown that closed OTEC power plants can practically generate electricity when the difference in warm and cold sea water inlet temperatures is greater than $20^{\circ}C$.

  • PDF

Power Enhancement Potential of a Low-Temperature Heat-Source-Driven Rankine Power Cycle by Transcritical Operation (초월임계 운전에 의한 저온 열원 랭킨 동력 사이클의 출력 향상 가능성)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Ra, Ho-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1343-1349
    • /
    • 2011
  • In this study, the power enhancement potential of a Rankine power cycle by transcritical operation was investigated by comparing the power of an HFC-134a subcritical cycle with that of an HFC-125 transcritical cycle, for a low-grade heat source with a temperature of about $100^{\circ}C$. For a fair comparison using different working fluids, each cycle was optimized by three design parameters from the viewpoint of power. In contrast to conventional approaches, the working fluid's heat transfer and pressure drop characteristics were considered in the present approach, with the aim of ensuring a more realistic comparison. The results showed that the HFC-125 transcritical cycle yields 9.4% more power than does the HFC-134a subcritical cycle under the simulation conditions considered in the present study.

Performance Characteristics of Organic Rankine Cycles Using Medium Temperature District Heating Water as Heat Source (지역난방용 중온수 열원 유기랭킨사이클 성능 특성)

  • Park, Woo-Jin;Yoo, Hoseon
    • Plant Journal
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • It is becoming increasingly important to make use of alternative energy source. because It is not able to rely on only fossil fuel for the recent increasing demand of energy consumption. With this situation, lots of studies for utilizing low grade energy such as industrial waste heat, solar energy, and geothermal energy have been conducted. The aim of this study is to predict the operation characteristics of working fluid by using performance analysis program (ThermoFlex) through the system analysis which is not mixing district return water but using ORC(Organic Rankine Cycle, hereinafter ORC) as a downstream cycle when accumulating district heating (hereinafter DH). In this study, We conducted the performance analysis for the case which has the district heating water temperature($120^{\circ}C$) and Flow rate of $163m^3/h$ (including District Heating return water flow), and examined several working fluid which is proper to this temperature. The case using R245fa (which is the best-case) showed 269.2kW power output, 6.37% efficiency. Additionally, Cut down on fuel was expected because of the boiler inlet temperature increase by being Formed $57.3{\sim}85^{\circ}C$ in a temperature of district heating return water, depending on a pressure change of a condenser in ORC system.

  • PDF

Performance Characteristics of Organic Rankine Cycle Using Medium Temperature Waste Heat with Different Working Fluids (중온 배기열을 이용한 유기랭킨사이클 작동유체별 성능특성)

  • Kwon, Dong-Uk;Heo, Ki-Moo;Yoon, Sung-Hoon;Moon, Yoon-Jae;Yoo, Ho-Sun;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.10 no.2
    • /
    • pp.38-47
    • /
    • 2014
  • Renewable Portfolio Standards was introduced into the system in Korea in 2012. Interest in the unutilized and renewable energy sources is increasing. and these being actively investigated. An organic rankine cycle has emerged as an alternative in order to take advantage of bio-gas engine heat of sewage treatment plants whose capacity is 1500 kW. The organic rankine cycle power system was simulated by a simulator which is a commercial program of power plant design and performance analysis. The biogas engine is operated by $460^{\circ}C$ and 2.7 kg/s flow rate in the sewage treatment plant. Working fluids(R-601a, R-123, R-245fa) are selected to use in ORC power system in this temperature range. It was the isopentane that is the best performance among three working fluids. It could be obtained net power of 163.1 kW and efficiency of 13.66% from isopentane in the simulation.

  • PDF

Effect on the Cycle Efficiency by Using Improved Parts for Operating the ORC (유기랭킨사이클 작동과 관련한 부품개선에 의한 사이클 효율변화에 대한 영향)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.34-42
    • /
    • 2016
  • The organic Rankine cycle (ORC) has been used to convert thermal energy to mechanical energy or electricity. The available thermal energy could be waste heat, solar energy, geothermal energy, and so on. However, these kinds of thermal energies cannot be provided continuously. Hence, the ORC can be operated at the off-design point. In this case, the performance of the ORC could be worse because the components of the ORC system designed based on a design point can be mismatched with the output power obtained at the off-design point. In order to improve the performance at the off-design point, a few components were replaced including generator, bearing, load bank, shaft, pump and so on. Experiments were performed on the same facility without including other losses in the experiment. The experimental results were compared with the results obtained with the previous model, and they showed that the system efficiency of the ORC was greatly affected by the losses occurred on the components.

A Study on the Way to Improve Efficiency of a Waste Heat Recovery System for an Automotive Engine (자동차 엔진용 폐열 회수 시스템의 효율 향상방안에 관한 연구)

  • Cha, Won-Sim;Choi, Kyung-Wook;Kim, Ki-Bum;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.76-81
    • /
    • 2012
  • In recent, there are tremendous efforts to apply co-generation concept in automobile to improve its thermal efficiency. The co-generation is basically a simple Rankine Cycle that uses the waste heat from the engine exhaust and coolant for heat source. In spite of developed nano technology and advance material science, the bulky co-generation system is still a big concern in automotive application. Therefore, the system should be effectively designed not to add much weight on the vehicle, but the capacity of the waste heat recovery should be still large. With such a goal in mind, the system thermal efficiency was investigated in terms of the system operation condition and working fluid. This paper provides a direction for the optimal design of the automotive co-generation system.

Thermodynamic Analysis of the Organic Rankine Cycle as a Waste Heat Recovery System of Marine Diesel Engine (유기 랜킨 사이클을 이용한 선박 주기관 폐열 회수 시스템의 열역학적 분석)

  • Jin, Jung-Kun;Lee, Ho-Ki;Park, Gun-Il;Choi, Jae-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.711-719
    • /
    • 2012
  • A thermodynamic analysis and a feasibility study on the organic Rankine cycle (ORC) as a waste heat recovery system for a marine diesel engine were carried out. The ORC and its combined cycle with the engine were simulated, and its performance was estimated theoretically using R245fa. A parametric study on the performance of the ORC system was carried out under different temperature conditions of the heat transfer loop and specification of the heat exchanger. According to the thermodynamic analysis, ~10% of the thermal efficiency of the cycle was able to be realized with the low temperature heat source below $250^{\circ}C$. The electric power output of the ORC was estimated to be about 4% of the mechanical power output of the engine, considering additional pumps for cooling water and circulation of the heat transfer medium. According to the present study, the electric power generated by the ORC is about 59%-69% of the required power, and it is possible to reduce the fuel consumption under normal seagoing conditions.

Design and Construction of a Bottoming Organic Rankine Cycle System for an Natural Gas Engine (가스엔진용 유기랭킨사이클의 설계 및 제작)

  • Lee, Minseog;Baek, Seungdong;Sung, Taehong;Kim, Hyun Dong;Chae, Jung Min;Cho, Young Ah;Kim, Hyoungtae;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.65-72
    • /
    • 2016
  • ORC system was designed and constructed for utilizing the heat of the exhaust gas and coolant released from the gas engine which was modified to use natural gas as a fuel. In this paper the components of the ORC system were designed and manufactured based on measured data of the gas engine. The components are composed of two plate heat exchanger, the 5kW-class expander and multi stage centrifugal pump. The thermodynamic performance of the ORC system was analyzed by using the electric heater. Also, the developed ORC system was implemented to modified natural gas engine. Two gas engines were used to supply heat to the ORC system. As a result of test bench, when the heat source temperature is $110^{\circ}C$ expander shaft power, the pressure ratio and cycle efficiency is 5.22kW, 7.41, 9.09%. As a result of field test, when the heat source temperature is $86^{\circ}C$ expander shaft power, the pressure ratio and cycle efficiency is 2kW, 3.75, 6.45%.