• Title/Summary/Keyword: Rank-order method

Search Result 229, Processing Time 0.027 seconds

Pupil Detection using Hybrid Projection Function and Rank Order Filter (Hybrid Projection 함수와 Rank Order 필터를 이용한 눈동자 검출)

  • Jang, Kyung-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.27-34
    • /
    • 2014
  • In this paper, we propose a pupil detection method using hybrid projection function and rank order filter. To reduce error to detect eyebrows as pupil, eyebrows are detected using hybrid projection function in face region and eye region is set to not include the eyebrows. In the eye region, potential pupil candidates are detected using rank order filter and then the positions of pupil candidates are corrected. The pupil candidates are grouped into pairs based on geometric constraints. A similarity measure is obtained for two eye of each pair using template matching, we select a pair with the smallest similarity measure as final two pupils. The experiments have been performed for 700 images of the BioID face database. The pupil detection rate is 92.4% and the proposed method improves about 21.5% over the existing method..

Improved Cancellation of Impulse Noise Using Rank-Order Method (Rank-Order 방법을 이용한 개선된 임펄스 잡음 제거)

  • Ko, Kyung-Woo;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.9-15
    • /
    • 2009
  • This paper proposes a cancellation algorithm of impulse noise using a rank-order method. The proposed method is a fast and simple algorithm that is composed of two parts. The first part involves noise detection using a fuzzy technique, where an image is divided into RGB color channels. Then every pixel in each color channel is investigated and assigned a probability indicating its chances of being a noise pixel. At this time, the rank order method using a noise-detection mask is utilized for accurate noise detection. Thereafter, the second part involves noise-cancellation, where each noise-pixel value in an image is replaced in proportion to its fuzzy probability. Through the experiments, both the conventional and proposed methods were simulated and compared. As a result, it is shown that proposed method is able to detect noisy pixels more accurately, and produce resulting images with high PSNR values.

Practical Validity of Weighting Methods : A Comparative Analysis Using Bootstrapping (부트스트랩핑을 이용한 가중치 결정방법의 실질적 타당성 비교)

  • Jeong, Ji-Ahn;Cho, Sung-Ku
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.1
    • /
    • pp.27-35
    • /
    • 2000
  • For a weighting method to be practically valid, it should produce weights which coincide with the relative importance of attributes perceived by the decision maker. In this paper, 'bootstrapping' is used to compare the practical validities of five weighting methods frequently used; the rank order centroid method, the rank reciprocal method, the rank sum method, the entropic method, and the geometric mean method. Bootstrapping refers to the procedure where the analysts allow the decision maker to make careful judgements on a series of similar cases, then infer statistically what weights he was implicitly using to arrive at the particular ranking. The weights produced by bootstrapping can therefore be regarded as well reflecting the decision maker's perceived relative importances. Bootstrapping and the five weighting methods were applied to a job selection problem. The results showed that both the rank order centroid method and the rank reciprocal method had higher level of practical validity than the other three methods, though a large difference could not be found either in the resulting weights or in the corresponding solutions.

  • PDF

HIGHER ORDER ITERATIONS FOR MOORE-PENROSE INVERSES

  • Srivastava, Shwetabh;Gupta, D.K.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.171-184
    • /
    • 2014
  • A higher order iterative method to compute the Moore-Penrose inverses of arbitrary matrices using only the Penrose equation (ii) is developed by extending the iterative method described in [1]. Convergence properties as well as the error estimates of the method are studied. The efficacy of the method is demonstrated by working out four numerical examples, two involving a full rank matrix and an ill-conditioned Hilbert matrix, whereas, the other two involving randomly generated full rank and rank deficient matrices. The performance measures are the number of iterations and CPU time in seconds used by the method. It is observed that the number of iterations always decreases as expected and the CPU time first decreases gradually and then increases with the increase of the order of the method for all examples considered.

The Rank Transform Method in Nonparametric Fuzzy Regression Model

  • Choi, Seung-Hoe;Lee, Myung-Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.3
    • /
    • pp.617-624
    • /
    • 2004
  • In this article the fuzzy number rank and the fuzzy rank transformation method are introduced in order to analyse the non-parametric fuzzy regression model which cannot be described as a specific functional form such as the crisp data and fuzzy data as a independent and dependent variables respectively. The effectiveness of fuzzy rank transformation methods is compared with other methods through the numerical examples.

  • PDF

Robust Pupil Detection using Rank Order Filter and Pixel Difference (Rank Order Filter와 화소값 차이를 이용한 강인한 눈동자 검출)

  • Jang, Kyung-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1383-1390
    • /
    • 2012
  • In this paper, we propose a robust pupil detection method using rank order filter and pixel value difference in facial image. We have detected the potential pupil candidates using rank order filter. Many false pupil candidates found at eyebrow are removed using the fact that the pixel difference is much at the boundary between pupil and sclera. The rest pupil candidates are grouped into pairs. Each pair is verified according to geometric constraints such as the angle and the distance between two candidates. A fitness function is obtained for each pair using the pixel values of two pupil regions, we select a pair with the smallest fitness value as a final pupil. The experiments have been performed for 400 images of the BioID face database. The results show that it achieves more than 90% accuracy, and especially the proposed method improves the detection rate and high accuracy for face with spectacle.

The Difference Order Clustering for Multi-dimensional Entities (다차원 개체를 위한 차이등급 clustering)

  • Rhee, Chul;Kang, Suk-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.14 no.1
    • /
    • pp.108-118
    • /
    • 1989
  • The clustering problem for multi-dimensional entities is investigated. A heuristic method, which is named as Difference Order Clustering (DOC) is developed for the grouping of multi-dimensional entities DOC method has an advantage of identifying the bottle-neck entities. Comparisons among the proposed DOC method, modified rank order clustering (MODROC) method, and lexicographical rank order clustering using minimum spanning tree (lexico-MMSTROC) are illustrated by a part type selection problems.

  • PDF

Robust Pupil Detection using Rank Order Filter and Cross-Correlation (Rank Order Filter와 상호상관을 이용한 강인한 눈동자 검출)

  • Jang, Kyung-Shik;Park, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1564-1570
    • /
    • 2013
  • In this paper, we propose a robust pupil detection method using rank order filter and cross-correlation. Potential pupil candidates are detected using rank order filter. Eye region is binarized using variable threshold to find eyebrow, and pupil candidates at the eyebrow are removed. The positions of pupil candidates are corrected, the pupil candidates are grouped into pairs based on geometric constraints. A similarity measure is obtained for two eye of each pair using cross-correlation, we select a pair with the largest similarity measure as a final pupil. The experiments have been performed for 500 images of the BioID face database. The results show that it achieves the high detection rate of 96.8% and improves about 11.6% than existing method.

Rank-based Control of Mutation Probability for Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.146-151
    • /
    • 2010
  • This paper proposes a rank-based control method of mutation probability for improving the performances of genetic algorithms (GAs). In order to improve the performances of GAs, GAs should not fall into premature convergence phenomena and should also be able to easily get out of the phenomena when GAs fall into the phenomena without destroying good individuals. For this, it is important to keep diversity of individuals and to keep good individuals. If a method for keeping diversity, however, is not elaborately devised, then good individuals are also destroyed. We should devise a method that keeps diversity of individuals and also keeps good individuals at the same time. To achieve these two objectives, we introduce a rank-based control method of mutation probability in this paper. We set high mutation probabilities to lowly ranked individuals not to fall into premature convergence phenomena by keeping diversity and low mutation probabilities to highly ranked individuals not to destroy good individuals. We experimented our method with typical four function optimization problems in order to measure the performances of our method. It was found from extensive experiments that the proposed rank-based control method could accelerate the GAs considerably.

Design of a Low-Order H Controller Using an Iterative LMI Method (반복 선형행렬부등식을 이용한 저차원 H 제어기 설계)

  • Kim Chun-Kyung;Kim Kook-Hun;Moon Young-Hyun;Kim Seog-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.279-283
    • /
    • 2005
  • This paper deals with the design of a low-order H/sub ∞/ controller by using an iterative linear matrix inequality (LMI) method. The low-order H/sub ∞/ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, the recently developed penalty function method is applied. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. Numerical experiments showed the effectiveness of the proposed algorithm.