• Title/Summary/Keyword: Range-Doppler algorithm

Search Result 68, Processing Time 0.024 seconds

A Critical Design Method of the Space-Based SARP Using RDA (RDA사용 위성기반 SARP 주요설계기법)

  • Hong, In-Pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1C
    • /
    • pp.46-54
    • /
    • 2006
  • The design method of synthetic aperture radar processor (SARP) in the critical design stage is to describe the processing algorithm, to estimate the fractional errors, and to set out the software (SW) and hardware (HW) mapping. The previous design methods for SARP are complex and depend on HW. Therefore, this paper proposes a critical design method that is of more general and independent of HW. This methodology can be applied for developing the space-based SARP using range-Doppler algorithm (RDA).

Efficient Measurement System to Investigate Micro-Doppler Signature of Ballistic Missile

  • Choi, In-O;Kim, Kyung-Tae;Jung, Joo-Ho;Kim, Si-Ho;Park, Sang-Hong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.614-621
    • /
    • 2016
  • Micro-Doppler (MD) shift caused by the micro-motion of a ballistic missile (BM) can be very useful to identify it. In this paper, the MD signatures of three scale-model BMs are investigated using a portable measurement system. The measurement system consists of an X-band 2-by-2 phase comparison mono-pulse radar, and a mechanical device that can impart controlled spinning and coning motions simultaneously to a model to yield the MD signature that replicates the characteristic of each target and the corresponding micro-motion. The coning motion determined the overall period of MD, and the spinning motion increased its amplitude. MD was also dependent on aspect angle. The designed system is portable, and can implement many micro-motions; it will contribute to analysis of MD in various situations.

A Direction Finding Proximity Fuze Sensor for Anti-air Missiles (방향 탐지용 전파형 대공 근접 신관센서)

  • Choi, Jae-Hyun;Lee, Seok-Woo;An, Ji-Yeon;Yeom, Kyung-Whan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.613-621
    • /
    • 2013
  • This paper presents the direction finding proximity fuze sensor using the clutter rejection method and the adaptive target detection algorithm for anti-air missiles. To remove effects by clutter and detect a target accurately, the clutter rejection method of Legendre sequence with BPSK(Bi phase Shift Keying) modulation has been proposed and the Doppler signal which has cross correlation characteristics is obtained from reflected target signals. Considering the change of the Doppler signal, the adaptive target detection algorithm has been developed and the direction finding algorithm has been fulfilled by comparing received powers from adjacent three receiving antennas. The encounter simulation test apparatus was made to collect and analyze reflected signal and test results showed that the -10 dBsm target was detected over 10 meters and the target with mesh clutter was detected and direction was distinguished definitely.

Robust Ultrasound Multigate Blood Volume Flow Estimation

  • Zhang, Yi;Li, Jinkai;Liu, Xin;Liu, Dong Chyuan
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.820-832
    • /
    • 2019
  • Estimation of accurate blood volume flow in ultrasound Doppler blood flow spectrograms is extremely important for clinical diagnostic purposes. Blood volume flow measurements require the assessment of both the velocity distribution and the cross-sectional area of the vessel. Unfortunately, the existing volume flow estimation algorithms by ultrasound lack the velocity space distribution information in cross-sections of a vessel and have the problems of low accuracy and poor stability. In this paper, a new robust ultrasound volume flow estimation method based on multigate (RMG) is proposed and the multigate technology provides detail information on the local velocity distribution. In this method, an accurate double iterative flow velocity estimation algorithm (DIV) is used to estimate the mean velocity and it has been tested on in vivo data from carotid. The results from experiments indicate a mean standard deviation of less than 6% in flow velocities when estimated for a range of SNR levels. The RMG method is validated in a custom-designed experimental setup, Doppler phantom and imitation blood flow control system. In vitro experimental results show that the mean error of the RMG algorithm is 4.81%. Low errors in blood volume flow estimation make the prospect of using the RMG algorithm for real-time blood volume flow estimation possible.

Development of High-Speed Real-Time Signal Processing for 3D Surveillance Radar (3차원 탐색 레이더용 고속 실시간 신호처리기 개발)

  • Bae, Jun-Woo;Kim, Bong-Jae;Choi, Jae-Hung;Jeong, Lae-Hyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.737-747
    • /
    • 2013
  • A 3-D surveillance radar is a pulsed-doppler radar to provide various target information, such as range, doppler and angle by performing TWS. This paper introduces HW/SW architecture of radar signal processing board to process in real-time using high-speed multiple DSP(Digital Signal Processor) based on COTS. Moreover, we introduced a implemented algorithm consisted of clutter map creation/renewal, FIR(Finite Impulse Response) filter for rejection of zero velocity components, doppler filter, hybrid CFAR and finally presented computational burden of each algorithm by performing operational test using a beacon.

An Efficient Rectification Algorithm for Spaceborne SAR Imagery Using Polynomial Model

  • Kim, Man-Jo
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.363-370
    • /
    • 2003
  • This paper describes a rectification procedure that relies on a polynomial model derived from the imaging geometry without loss of accuracy. By using polynomial model, one can effectively eliminate the iterative process to find an image pixel corresponding to each output grid point. With the imaging geometry and ephemeris data, a geo-location polynomial can be constructed from grid points that are produced by solving three equations simultaneously. And, in order to correct the local distortions induced by the geometry and terrain height, a distortion model has been incorporated in the procedure, which is a function of incidence angle and height at each pixel position. With this function, it is straightforward to calculate the pixel displacement due to distortions and then pixels are assigned to the output grid by re-sampling the displaced pixels. Most of the necessary information for the construction of polynomial model is available in the leader file and some can be derived from others. For validation, sample images of ERS-l PRI and Radarsat-l SGF have been processed by the proposed method and evaluated against ground truth acquired from 1:25,000 topography maps.

Pseudo Long Base Line (LBL) Hybrid Navigation Algorithm Based on Inertial Measurement Unit with Two Range Transducers (두 개의 초음파 거리계를 이용한 관성센서 기반의 의사 장기선 (Pseudo-LBL) 복합항법 알고리듬)

  • LEE PAN-MOOK;JUN BONG-HUAN;HONG SEOK-WON;LIM YONG-KON;YANG SEUNG-IL
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.71-77
    • /
    • 2005
  • This paper presents an integrated underwater navigational algorithm for unmanned underwater vehicles, using additional two-range transducers. This paper proposes a measurement model, using two range measurements, to improve the performance of an IMU-DVL (inertial measurement unit - Doppler velocity log) navigation system for long-time operation of underwater vehicles, excluding DVL measurement. Extended Kalman filter was adopted to propagate the error covariance, to update the measurement errors, and to correct the state equation when the external measurements are available. Simulation was conducted with the 6-d.o.f nonlinear numerical model of an AUV in lawn-mowing survey mode, at current flaw, where the velocity information is unavailable. Simulations illustrate the effectiveness of the integrated navigation system, assisted by the additional range measurements without DVL sensing.

Underwater Target Discrimination using Sequential Testings and Data Fusion (순차 검증과 자료융합을 이용한 수중 표적 판별)

  • Kwak, Eun-Joo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.657-659
    • /
    • 1998
  • In this paper we discuss an algorithm to discriminate a target under track against multiple acoustic counter-measure (ACM) sources, based on sequential testings of multiple hypotheses. The ACM sources are separated from the target under track and generate, while drifting, measurements with false range and Doppler information. The purpose of the ACM is to mislead the target tracking and to help the true target evade a pursuer. The proposed algorithm uses as a test statistic a function of both the sequences of processed waveform signature and the innovation sequences from extended Kalman filters to estimate the target dynamics and the drifting positions of the ACM sources. Numerical experiments on various scenarios show that the proposed algorithm discriminates the target faster with a higher probability of success than the algorithm using only the innovation sequences from extended Kalman filters.

  • PDF

Performance Analysis of Range and Velocity Measurement Algorithm for Multi-Function Radar using Discriminator Estimation Method (변별기 추정방식을 적용한 다기능 레이다용 거리 및 속도 측정 알고리즘 성능 분석)

  • Choi Beyung Gwan;Lee Bum Suk;Kim Whan Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.109-117
    • /
    • 2005
  • Range and velocity measurement algorithm is a procedure for estimating the accurate target position by using matched filter outputs equally spaced both in range and doppler frequency domain. Especially, in measurement algorithm for multi-function radar, it is necessary to consider processing time as well as accuracy in order to track multi-targets simultaneously. In this paper, we analyze range and velocity measurement algorithm using discriminator estimation method which is a technique applied to angle measurement of monopulse radar. The applied method required constant processing time for estimation can be used in multiple target tacking. But, it is necessary to consider measurement accuracy because of using minimum channel outputs for estimation. In the simulation, we show that the applied method is superior to the traditional gravity center measurement algorithm with respect to the accuracy performance and also analyze the characteristics of the proposed technique by calculating RMS error level as the processing parameters such as pulse width , channel step, etc. change.

Underwater target discrimination using geometry of ACM tracks (음향교란 항적의 기하학적 특성을 이용한 수중 표적 판별)

  • 정영헌;전상운;홍선목
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.110-119
    • /
    • 1998
  • In this paper we discuss an algorithm to discriminate a garget under track against multiple acoustic counter-measure (ACM) sources, based on sequential testings of multiple hypotheses. The ACM sources are separated from the target under track and generate, while drifting, measurements with false range and Doppler information. The purpose of the ACM is to mislead the target tracking and to help the true target evade a pursuer. The proposed algorithm uses as a test statistic a function of the innovation sequences from extended Kalman filters to estimate the target dynamics and the drifting positions of the ACM sources. results of numerical experimenats are presented to show a performance profile of the proposed algorithm.

  • PDF