• Title/Summary/Keyword: Range uncertainty

Search Result 520, Processing Time 0.027 seconds

Uncertainty Quantification of Welding Residual Stress Analysis based on Domestic Organizations Round-Robin Evaluation (라운드로빈 평가 결과에 기반한 국내 기관의 용접잔류응력 해석 분포의 불확실성 평가)

  • Sung-Kyun Jung;Jun-Young Jeon;Chan-kyu Kim;Chang-Sik Oh;Sung-Sik Kang;Chang-Young Oh
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.130-139
    • /
    • 2023
  • This paper examines the quantification of uncertainty for welding residual stresses in dissimilar metal welds used in nuclear power plants. A mock-up of a dissimilar metal weld pipe, consisting of carbon and stainless steel pipes, was fabricated to measure the residual stress. A Round-Robin analysis was conducted by Korean institutions to assess the welding residual stress. The analysis was carried out in the second order, and the data obtained by each institution was evaluated based on the information provided. Using the Round-Robin results, the distribution of uncertainty in welding residual stresses among Korean institutions was evaluated. The quantification of uncertainty for Korean institutions was found to have a wider range compared to the distribution of welding residual stresses observed in overseas institutions. This study is considered useful in the establishment of comprehensive strategies for evaluating welding residual stress analysis methods used by domestic institutions.

Absolute Evaluation of Capacitor and Inductor Using Voltage Transformer Comparator (전압변성기 비교기를 이용한 커패시터와 인덕터의 절대 평가)

  • Han, Sang-Gil;Kim, Yoon-Hyoung;Jung, Jae-Kap;Kim, Han-Jun;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.285-290
    • /
    • 2008
  • We have developed the absolute evaluation technique of capacitor and inductor by measuring the phase displacement as a function of resistance of employed resistors in voltage transformer(VT) comparator. The methods were applied to the capacitor with the range of 100 nF - $5{\mu}F$ and the inductor with the range of $100{\mu}H{\sim}1\;H$. The capacitance values of capacitor obtained using our method are consistent within the expanded uncertainty those obtained using capacitor bridge. The inductance values of inductor obtained using our method are also consistent within the expanded uncertainty those obtained using LCR meter.

Numerical Model for Flood Inundation Analysis in a River(II) : Uncertainty Analysis (하천 홍수범람해석을 위한 수치모형의 개발(II): 불확실도 해석)

  • Lee, Hong-Rae;Han, Geon-Yeon;Kim, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.429-437
    • /
    • 1998
  • The numerical model named "DWOPER-LEV" for the uncertainty analysis of flood inundation is developed. DWOPER model is expanded to compute overtopping risks of levee and to predict the range of the possible flood extent. Monte-Carlo simulation is applied to examine the uncertainties in cross section geometry and Manning's roughness coefficient. The model is applied to an actual levee break of the South Han River. The risks of overtopping are computed and the possible range of inundated area and inundated depth are estimated.

  • PDF

Measurement System of Bidirectional Reflectance-distribution Function (양방향 반사율 분포함수 측정시스템)

  • Hwang, Ji-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.2
    • /
    • pp.46-52
    • /
    • 2010
  • A theory of bidirectional reflectance-distribution function (BRDF), a newly developed BRDF measurement system, and a method for evaluating the uncertainty of BRDF measurements are presented. The BRDF measurement system which measures BRDF in a wavelength range of (380~1500) nm with an angle range of $(-75{\sim}75)^{\circ}$ was installed. The measurement uncertainties, consisting of correlated terms and uncorrelated terms, were evaluated for the BRDF measurement system, resulting in the relative expanded uncertainty less than 3% (k=2).

Precision Nanometrology and its Applications to Precision Nanosystems

  • Gao Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.14-20
    • /
    • 2005
  • In this paper, a new field of metrology called 'precision nanometrology' is presented. The 'precision nanometrology' is the result of evolutions of the traditional 'precision metrology' and the new 'nanometrology'. 'Precision nanometrology' is defined here as the science of dimensional measurement and motion measurement with 100 nm to 0.1 nm resolution/uncertainty within a range of micrometer to meter. The definition is based on the fact that nanometrology in nanoengineering and the precision industries, such as semiconductor industry, precision machine tool industry, precision instrument industry, is not only concerned with the measurement resolution and/or uncertainty but also the range of measurement. It should also be pointed out that most of the measurement objects in nanoengineering have dimensions larger than 1 micrometer. After explaining the definition of precision nanometrology, the paper provides several examples showing the critical roles of precision nanometrology in precision nanosystems, including nanometrology system, nanofabrication system, and nanomechatronics system.

Robust range-only beacon mapping in multipath environments

  • Park, Byungjae;Lee, Sejin
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.108-117
    • /
    • 2020
  • This study proposes a robust range-only beacon mapping method for registering the locations of range-only beacons automatically. The proposed method deals with the multipath propagation of signals from range-only beacons using the range-only measurement association (RoMA) and an unscented Kalman filter (UKF). The RoMA initially predicts the candidate positions of a range-only beacon. The location of the range-only beacon is then updated using the UKF. With the proposed method, the locations of range-only beacons are accurately estimated in a multipath environment. The proposed method also provides the location uncertainty of each range-only beacon. Simulation results using the model for multipath propagation and experimental results in a real indoor environment verify the performance of the proposed method.

Intercomparison of uncertainty to bias correction methods and GCM selection in precipitation projections (강수량예측에서 편이보정방법과 GCM 선택에 대한 불확실성 비교)

  • Song, Young Hoon;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.249-258
    • /
    • 2020
  • Many climate studies have used the general circulation models (GCMs) for climate change, which can be currently available more than sixty GCMs as part of the Assessment Report (AR5). There are several types of uncertainty in climate studies using GCMs. Various studies are currently being conducted to reduce the uncertainty associated with GCMs, and the bias correction method used to reduce the difference between the simulated and the observed rainfall. Therefore, this study mainly considered climate change scenarios from nine GCMs, and then quantile mapping methods were applied to correct biases in climate change scenarios for each station during the historical period (1970-2005). Moreover, the monthly rainfall for the future period (2011-2100) is obtained from the RCP 4.5 scenario. Based on the bias-corrected rainfall, the standard deviation and the inter-quartile range (IQR) from the first to third quartiles were estimated. For 2071-2100, the uncertainty for the selection of GCMs is larger than that for the selection of bias correction methods and vice versa for 2011-2040. Therefore, this study showed that the selection of GCMs and the bias correction methods can affect the result for the future climate projection.

Comparison of Control Performance in Electro.hydraulic Servo Systems (전기.유압 서보 시스템의 제어성능 비교)

  • Kim, D.T.;Park, K.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.2
    • /
    • pp.14-20
    • /
    • 2006
  • A controller design procedure for an electro-hydraulic positioning systems has been developed using $H{\infty}$ control. The generalized plant models and weighting function for multiplicative uncertainty modelling error was presented along with $H{\infty}$ controller designs in order to investigate the robust stability and performance. Both disturbance rejection and command tracking performances were improved with the $H{\infty}$ controller, and the better uniformity of time response is achieved across wide range of operating conditions than the PID, LQR and LQG control scheme. The multiplicative uncertainty case was specifically suited for the design of an electro-hydraulic positioning control systems using $H{\infty}$ control.

  • PDF

The $H_{\infty}$ control of the uncertainty for the hydraulic fluid valve-motor system (유압 밸브-모터 시스템의 불확실성에 대한 $H_{\infty}$ 제어)

  • Kim, D.S.;Lee, J.H.;Yoo, S.H.;Lee, C.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.676-681
    • /
    • 2000
  • This study describes a hydraulic fluid property compensator under the various operating conditions. Because hydraulic fluid systems have much more excellent features than other control systems, they are used in many fields. However, the characteristics of hydraulic fluid are changed due to various operating conditions. This phenomenon is called uncertainty. Especially, bulk modulus is considered as the most dominant parameter in this study. Under the wide range of temperature and pressure, bulk modulus is changed. In order to overcome the uncertainty, $H_{\infty}$ technique will be used for this study. Spectral factorization, model-matching problem and controller parametrization are also applied to achieve the desired robust control action. Designed controller using the $H_{\infty}$ technique, is adopted for the hydraulic fluid valve-motor system.

  • PDF

How Innovative is a Firm in a Structural Hole Position?

  • Minjung KIM
    • The Journal of Industrial Distribution & Business
    • /
    • v.15 no.8
    • /
    • pp.1-12
    • /
    • 2024
  • Purpose: Marketing networks are essential for firms to gain new information and resources, yet their effect on innovation performance under uncertainty remains unclear. This study aims to elucidate the effects of technological and demand variability on the innovation performance of first-tier suppliers, considering different levels of structural holes. It particularly explores how structural holes moderate the relationship between uncertain factors and innovation performance. Research design, data and methodology: To assess the hypotheses, a survey was conducted with the first-tier suppliers. The survey targeted internal networks and the relationships between manufacturers, suppliers, and subsuppliers. Structural equation modeling was employed to validate the hypotheses using measures from previous research. Results: The findings indicate that the impact of technological uncertainty and demand variability on innovation performance varies based on the extent of structural holes in the network. Conclusions: This study provides both theoretical and practical insights for distribution channels, highlighting the competitive advantage of interfirm networks in uncertain conditions. However, the focus on the engineering industry may limit the generalizability of the findings. Future research should explore a broader range of industries to improve result applicability.