• Title/Summary/Keyword: Range uncertainty

Search Result 524, Processing Time 0.036 seconds

A Study on the Uncertainty Estimation of Flowmeter Calibrator with Two Master Flowmeters (2개의 기준유량계를 이용한 유량계 교정장치의 측정불확도 평가에 관한 연구)

  • Choi Jong Oh;Lee Woan Kyu;Lim Ki Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1219-1230
    • /
    • 2004
  • Comparing to the gravimetric and volumetric method, the flowmeter calibration based on the master meter method is relatively economical and convenient, especially for high flowrate. The uncertainty of flow quantity and flowrate using the master meter method was evaluated according to the GUM (Guide to the Expression of Uncertainty in Measurement). In order to apply for the wider flow range, two master meters (electromagnetic flow meter) were employed as reference flowmeters. The uncertainty of the master meter was obtained by combining the statistical variation of the repeated measurements and the variation of fluid density and pipe material due to temperature and pressure changes were scrutinized. for a practical application, the uncertainty of calibrator, whose measuring capacity of 1000 ㎥/h obtained by employing two 500 ㎥/h electromagnetic How meters, was evaluated. The uncertainty budget shows the quantitative contribution of each uncertainty component to the overall uncertainty of the calibrator. As a result, it was found that the dominant uncertainties were from the master meter, which was evaluated statistically, and from the process of least squares fitting. On the contrary, the uncertainties arising from the variation of the fluid density and the pipe volume due to the temperature and pressure were negligible.

Measurement Uncertainty Analysis of a Turbine Flowmeter for Fuel Flow Measurement in Altitude Engine Test (엔진 고공 시험에서 연료 유량 측정용 터빈 유량계의 측정 불확도 분석)

  • Yang, In-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.42-47
    • /
    • 2011
  • Measurement uncertainty analysis of fuel flow using turbine flowmeter was performed for the case of altitude engine test. SAE ARP4990 was used as the fuel flow calculation procedure, as well as the mathematical model for the measurement uncertainty assessment. The assessment was performed using Sensitivity Coefficient Method. 11 parameters involved in the calculation of the flow rate were considered. For the given equipment setup, the measurement uncertainty of fuel flow was assessed in the range of 1.19~1.86 % for high flow rate case, and 1.47~3.31 % for low flow rate case. Fluctuation in frequency signal from the flowmeter had the largest influence on the fuel flow measurement uncertainty for most cases. Fuel temperature measurement had the largest for the case of low temperature and low flow rate. Calibration of K-factor and the interpolation of the calibration data also had large influence, especially for the case of very low temperature. Reference temperature, at which the reference viscosity of the sample fuel was measured, had relatively small contribution, but it became larger when the operating fuel temperature was far from reference temperature. Measurement of reference density had small contribution on the flow rate uncertainty. Fuel pressure and atmospheric pressure measurement had virtually no contribution on the flow rate uncertainty.

Uncertainty Region Scheme for Query Processing of Uncertain Moving Objects (불확실 이동체의 질의 처리를 위한 불확실성 영역 기법)

  • Ban Chae-Hoon;Hong Bong-Hee;Kim Dong-Hyun
    • Journal of KIISE:Databases
    • /
    • v.33 no.3
    • /
    • pp.261-270
    • /
    • 2006
  • Positional data of moving objects can be regularly sampled in order to minimize the cost of data collection in LBS. Since position data which are regularly sampled cannot include the changes of position occurred between sampling periods, sampled position data differ from the data predicted by a time parameterized linear function. Uncertain position data caused by these differences make the accuracy of the range queries for present positions diminish in the TPR tree. In this paper, we propose the uncertainty region to handle the range queries for uncertain position data. The uncertainty region is defined by the position data predicted by the time parameterized linear function and the estimated uncertainty error. We also present the weighted recent uncertainty error policy and the kalman filter policy to estimate the uncertainty error. For performance test, the query processor based by the uncertainty region is implemented in the TPR tree. The experiments show that the Proposed query processing methods are more accurate than the existing method by 15%.

Effect of critical flow model in MARS-KS code on uncertainty quantification of large break Loss of coolant accident (LBLOCA)

  • Lee, Ilsuk;Oh, Deogyeon;Bang, Youngseog;Kim, Yongchan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.755-763
    • /
    • 2020
  • The critical flow phenomenon has been studied because of its significant effect for design basis accidents in nuclear power plants. Transition points from thermal non-equilibrium to equilibrium are different according to the geometric effect on the critical flow. This study evaluates the uncertainty parameters of the critical flow model for analysis of DBA (Design Basis Accident) with the MARS-KS (Multi-dimensional Analysis for Reactor Safety-KINS Standard) code used as an independent regulatory assessment. The uncertainty of the critical flow model is represented by three parameters including the thermal non-equilibrium factor, discharge coefficient, and length to diameter (L/D) ratio, and their ranges are determined using large-scale Marviken test data. The uncertainty range of the thermal non-equilibrium factor is updated by the MCDA (Model Calibration through Data Assimilation) method. The updated uncertainty range is confirmed using an LBLOCA (Large Break Loss of Coolant Accident) experiment in the LOFT (Loss of Fluid Test) facility. The uncertainty ranges are also used to calculate an LBLOCA of the APR (Advanced Power Reactor) 1400 NPP (Nuclear Power Plants), focusing on the effect of the PCT (Peak Cladding Temperature). The results reveal that break flow is strongly dependent on the degree of the thermal non-equilibrium state in a ruptured pipe with a small L/D ratio. Moreover, this study provides the method to handle the thermal non-equilibrium factor, discharge coefficient, and length to diameter (L/D) ratio in the system code.

2 kNm Deadweight Torque Standard Machine in KRISS (한국표준과학연구원의 실하중 토크 표준기)

  • 김민석;박연규;김종호;강대임
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.656-659
    • /
    • 2004
  • As the demand for traceable calibrations of torque measuring devices has considerably increased both in the production sector and in research institutes, suitable standard machines had to be developed at the Korea Research Institute of Standards and Science. Owing to its special design, the small uncertainty of measurement required for the realization of the static torque can be reached (relative uncertainty of measurement < 5$\times$10$^{-5}$ in the measurement range between 500 and 2000 Nm, and < 1$\times$10$^{-4}$ in the measurement range from 10 to 500 Nm). The relative discrepancy between our torque calibration results of 2 kNm and PTB s (Physikalisch Technische Bundesanstalt, Germany) results was less than 2$\times$10$^{-5}$ , which confirming our uncertainty estimation.

  • PDF

Network Based Robot Simulator Implementing Uncertainties in Robot Motion and Sensing (로봇의 이동 및 센싱 불확실성이 고려된 네트워크 기반 로봇 시뮬레이션 프로그램)

  • Seo, Dong-Jin;Ko, Nak-Yong;Jung, Se-Woong;Lee, Jong-Bae
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.23-31
    • /
    • 2010
  • This paper suggests a multiple robot simulator which considers the uncertainties in robot motion and sensing. A mobile robot moves with errors due to some kinds of uncertainties from actuators, wheels, electrical components, environments. In addition, sensors attached to a mobile robot can't make accurate output information because of uncertainties of the sensor itself and environment. Uncertainties in robot motion and sensing leads researchers find difficulty in building mobile robot navigation algorithms. Generally, a robot algorithm without considering unexpected uncertainties fails to control its action in a real working environment and it leads to some troubles and damages. Thus, the authors propose a simulator model which includes robot motion and sensing uncertainties to help making robust algorithms. Sensor uncertainties are applied in range sensors which are widely used in mobile robot localization, obstacle detection, and map building. The paper shows performances of the proposed simulator by comparing it with a simulator without any uncertainty.

Theoretical Considerations on Combined Optical Distance Measurements Using a Femtosecond Pulse Laser

  • Joo, Ki-Nam;Kim, Seung-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.396-400
    • /
    • 2012
  • We introduce a combined technique and the mathematical description for distance measurements using a femtosecond pulse laser in a long range and a fine resolution. For distance measurements, the maximum measurable range can be extended by combining measurement results from several different methods while requiring relationships between the different measurement uncertainties and unambiguity ranges. This paper briefly explains why the uncertainty of a rough measurement technique (RMT) should be, at least, smaller than the half unambiguity range of a fine measurement technique (FMT) in order to combine a FMT with a RMT. Further discussions about the total measurement range, resolution, and uncertainty for various optical measurement techniques are also discussed.

A Study on the Development and the Uncertainty Analysis of Oil Flow Standard System (기름 유량표준장치의 개발 및 측정 불확도에 관한 연구)

  • Lim, Ki-Won;Choi, Jong-Oh
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1071-1080
    • /
    • 2003
  • A national standard system was developed in order to calibrate and test the oil flowmeters for the petroleum field. A stop valve and a gyroscopic weighing scale were employed for the primary standard of the flow quantity. It is operated by the standing start and finish mode and the static weighing method. The model equation for uncertainty evaluation was based on the calibration principle of standard system. The sources of the uncertainties were quantified and combined according to the GUM(Guide to the Expression of Uncertainty in Measurement). It was found that the standard system had the relative expanded uncertainty of 0.04 % in the range of 18 - 350 ㎥/h. According to the uncertainty budget, the uncertainties of the fluid density and the volume of pipeline, which were temperature dependent, contributed 92% of final uncertainty in the oil flow standard system.

The Role of Structural Holes in Uncertain Environments in Channel Relationships

  • Kim, Min-Jung
    • Journal of Distribution Science
    • /
    • v.16 no.6
    • /
    • pp.25-35
    • /
    • 2018
  • Purpose - Although marketing networks are crucial competitive advantage in terms of firm's new information and resource acquisition ability, their impact on new product development performance remains vague, especially under environmental uncertainty. The principal objective of this research is to provide a better understanding of effects of technological uncertainty and volume uncertainty on first tier supplier's perceived performance of new product development under conditions reflecting varying levels of structural holes. Specifically, this research examines the moderating effect of structural holes on the relationship between environmental uncertainty and new product development performance. Research design, data, and methodology - To test the hypotheses, a questionnaire survey was conducted with a Korean engineering firm's major first-tier suppliers in the context of internal network entities, manufacturer-supplier-subsupplier relationships, and to verify the proposed hypotheses, structural equation modeling was established. Construct measures were based on existing measures and previous research. Results - The survey results indicate that technological uncertainty and volume uncertainty differentially affect NPD performance under conditions of high and low structural holes. Conclusions - This study offer some theoretical and practical implications among distribution channel members, especially, this study suggests that interfirm networks have critical competitive advantage in uncertain environments. The distinctiveness of engineering industry might limit the generalizability of the results. Thus, future research should consider a wider range of industries.

Relationships among Uncertainty, Distress, and Quality of Life in Lung Cancer Patients: Mediating effect of Resilience (폐암 환자의 불확실성과 디스트레스가 삶의 질에 미치는 영향: 극복력의 조절효과)

  • Lee, Jungah;Kim, Minju
    • Journal of muscle and joint health
    • /
    • v.25 no.2
    • /
    • pp.148-156
    • /
    • 2018
  • Purpose: The purposes of this study were to examine health-related quality of life and to identify the mediating effect of resilience on the relationship among uncertainty, distress, and health-related quality of life in lung cancer patients. Methods: A total of 149 lung cancer patients visiting the D hospital in B city completed a questionnaire, including demographic and disease-specific characteristics, uncertainty, distress, resilience, and health-related quality of life. Data were analyzed with descriptive analysis, t-tests, ANOVA, and multiple regression analyses via SPSS 24. Results: Health-related quality of life was $81.00{\pm}21.39$ (range 0~136) in lung cancer patients. In the results of hierarchical regression analyses, the health-related quality of life was associated with education, uncertainty, distress, and resilience. However, there was no mediating effect of resilience on the relationship among uncertainty, distress, and health-related quality of life. Conclusion: Lung cancer patients with high uncertainty and distress and low resilience could experience low health-related quality of life. In order to reduce uncertainty and distress, it is necessary to provide more detailed, systematic information and support, while reinforcing positive thinking.