• 제목/요약/키워드: Range processing

검색결과 2,762건 처리시간 0.041초

Runway visual range prediction using Convolutional Neural Network with Weather information

  • Ku, SungKwan;Kim, Seungsu;Hong, Seokmin
    • International Journal of Advanced Culture Technology
    • /
    • 제6권4호
    • /
    • pp.190-194
    • /
    • 2018
  • The runway visual range is one of the important factors that decide the possibility of taking offs and landings of the airplane at local airports. The runway visual range is affected by weather conditions like fog, wind, etc. The pilots and aviation related workers check a local weather forecast such as runway visual range for safe flight. However there are several local airfields at which no other forecasting functions are provided due to realistic problems like the deterioration, breakdown, expensive purchasing cost of the measurement equipment. To this end, this study proposes a prediction model of runway visual range for a local airport by applying convolutional neural network that has been most commonly used for image/video recognition, image classification, natural language processing and so on to the prediction of runway visual range. For constituting the prediction model, we use the previous time series data of wind speed, humidity, temperature and runway visibility. This paper shows the usefulness of the proposed prediction model of runway visual range by comparing with the measured data.

정전용량형 변위 센서 신호 처리 회로 개발 및 성능 평가 (Development of a Signal Conditioning Circuit for Capacitive Displacement Sensors and Performance Evaluation)

  • 김종안;김재완;엄태봉;강주식
    • 한국정밀공학회지
    • /
    • 제24권9호
    • /
    • pp.60-67
    • /
    • 2007
  • A signal conditioning circuit for capacitive displacement sensors was developed using a high frequency modulation/demodulation method, and its performance was evaluated. Since capacitive displacement sensors can achieve high resolution and linearity, they have been widely used as precision sensors within the range of several hundred micrometers. However, they inherently have a limitation in low frequency range and some nonlinearity characteristics and so a specially designed signal conditioning circuit is needed to handle these properties. The developed signal processing circuit consists of three parts: linearization, modulation/demodulation, and nonlinearity compensation. Each part was constructed discretely using several IC chips and passive elements. An evaluation system for precision displacement sensors was developed using a laser interferometer, a precision stage, and a PID position controller. The signal processing circuit was tested using the evaluation system in the respect of resolution, repeatability, linearity, and so on. From the experimental results, we know that a highly linear voltage output can be obtained successfully, which is proportional to displacement and the nonlinearity of output is less than 0.02% of full range. However, in the future, further investigation is required to reduce noise level and phase delay due to a low-pass filter. The evaluation system also can be applied effectively to calibration and evaluation of precision sensors and stages.

자율주행을 위한 레이더 기반 인지 알고리즘의 정량적 분석 (Quantitative Analysis of Automotive Radar-based Perception Algorithm for Autonomous Driving)

  • 이호준;채흥석;서호태;이경수
    • 자동차안전학회지
    • /
    • 제10권2호
    • /
    • pp.29-35
    • /
    • 2018
  • This paper presents a quantitative evaluation method and result of moving vehicle perception using automotive radar. It is also important to analyze the accuracy of the perception algorithm quantitatively as well as to accurately percept nearby moving vehicles for safe and efficient autonomous driving. In this study, accuracy of the automotive radar-based perception algorithm which is developed based on interacting multiple model (IMM) has been verified via vehicle tests on real roads. In order to obtain experimental data for quantitative evaluation, Long Range Radar (LRR) has been mounted on the front of the ego vehicle and Short Range Radar (SRR) has been mounted on the rear side of both sides. RT-range has been installed on the ego vehicle and the target vehicle to simultaneously collect reference data on the states of the two vehicles. The experimental data is acquired in various relative positions and velocity, and the accuracy of the algorithm has been analyzed according to relative position and velocity. Quantitative analysis is conducted on relative position, relative heading angle, absolute velocity, and yaw rate of each vehicle.

Optimal Design of Nonlinear Hydraulic Engine Mount

  • Ahn Young Kong;Song Jin Dae;Yang Bo-Suk;Ahn Kyoung Kwan;Morishita Shin
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.768-777
    • /
    • 2005
  • This paper shows that the performance of a nonlinear fluid engine mount can be improved by an optimal design process. The property of a hydraulic mount with inertia track and decoupler differs according to the disturbance frequency range. Since the excitation amplitude is large at low excitation frequency range and is small at high excitation frequency range, mathematical model of the mount can be divided into two linear models. One is a low frequency model and the other is a high frequency model. The combination of the two models is very useful in the analysis of the mount and is used for the first time in the optimization of an engine mount in this paper. Normally, the design of a fluid mount is based on a trial and error approach in industry because there are many design parameters. In this study, a nonlinear mount was optimized to minimize the transmissibilities of the mount at the notch and the resonance frequencies for low and high-frequency models by a popular optimization technique of sequential quadratic programming (SQP) supported by $MATLAB^{(R)}$subroutine. The results show that the performance of the mount can be greatly improved for the low and high frequencies ranges by the optimization method.

POLAR EXPONENTIAL GRID와 장방형격자 영상시스템의 영상분해도 및 영상처리능력 비교 (A Comparison of System Performances Between Rectangular and Polar Exponential Grid Imaging System)

  • Jae Kwon Eem
    • 전자공학회논문지B
    • /
    • 제31B권2호
    • /
    • pp.69-79
    • /
    • 1994
  • The conventional machine vision system which has uniform rectangular grid requires tremendous amount of computation for processing and analysing an image especially in 2-D image transfermations such as scaling, rotation and 3-D reconvery problem typical in robot application environment. In this study, the imaging system with nonuiformly distributed image sensors simulating human visual system, referred to as Ploar Exponential Grid(PEG), is compared with the existing conventional uniform rectangular grid system in terms of image resolution and computational complexity. By mimicking the geometric structure of the PEG sensor cell, we obtained PEG-like images using computer simulation. With the images obtained from the simulation, image resolution of the two systems are compared and some basic image processing tasks such as image scaling and rotation are implemented based on the PEG sensor system to examine its performance. Furthermore Fourier transform of PEG image is described and implemented in image analysis point of view. Also, the range and heading-angle measurement errors usually encountered in 3-D coordinates recovery with stereo camera system are claculated based on the PEG sensor system and compared with those obtained from the uniform rectangular grid system. In fact, the PEC imaging system not only reduces the computational requirements but also has scale and rotational invariance property in Fourier spectrum. Hence the PEG system has more suitable image coordinate system for image scaling, rotation, and image recognition problem. The range and heading-angle measurement errors with PEG system are less than those of uniform rectangular rectangular grid system in practical measurement range.

  • PDF

A Novel 3-D Imaging Configuration Exploiting Synthetic Aperture Ladar

  • Guo, Liang;Huang, Yinli;Li, Xiaozhen;Zeng, Xiaodong;Tang, Yu;Xing, Mengdao
    • Current Optics and Photonics
    • /
    • 제1권6호
    • /
    • pp.598-603
    • /
    • 2017
  • Traditional three-dimensional (3-D) laser imaging systems are based on real aperture imaging technology, whose resolution decreases as the range increases. In this paper, we develop a novel 3-D imaging technique based on the synthetic aperture technology in which the imaging resolution is significantly improved and does not degrade with the increase of the range. We consider an imaging laser radar (ladar) system using the floodlight transmitting mode and multi-beam receiving mode. High 3-D imaging resolutions are achieved by matched filtering the linear frequency modulated (LFM) signals respectively in range, synthetic aperture along-track, and the real aperture across-track. In this paper, a novel 3-D imaging signal model is given first. Because of the motion during the transmission of a sweep, the Doppler shift induced by the continuous motion is taken into account. And then, a proper algorithm for the 3-D imaging geometry is given. Finally, simulation results validate the effectiveness of the proposed technique.

A High Throughput Multiple Transform Architecture for H.264/AVC Fidelity Range Extensions

  • Ma, Yao;Song, Yang;Ikenaga, Takeshi;Goto, Satoshi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제7권4호
    • /
    • pp.247-253
    • /
    • 2007
  • In this paper, a high throughput multiple transform architecture for H.264 Fidelity Range Extensions (FRExt) is proposed. New techniques are adopted which (1) regularize the $8{\times}8$ integer forward and inverse DCT transform matrices, (2) divide them into four $4{\times}4$ sub-matrices so that simple fast butterfly algorithm can be used, (3) because of the similarity of the sub-matrices, mixed butterflies are proposed that all the sub-matrices of $8{\times}8$ and matrices of $4{\times}4$ forward DCT (FDCT), inverse DCT (IDCT) and Hadamard transform can be merged together. Based on these techniques, a hardware architecture is realized which can achieve throughput of 1.488Gpixel/s when processing either $4{\times}4\;or\;8{\times}8$ transform. With such high throughput, the design can satisfy the critical requirement of the real-time multi-transform processing of High Definition (HD) applications such as High Definition DVD (HD-DVD) ($1920{\times}1080@60Hz$) in H.264/AVC FRExt. This work has been synthesized using Rohm 0.18um library. The design can work on a frequency of 93MHz and throughput of 1.488Gpixel/s with a cost of 56440 gates.

CCD카메라와 레이저 거리미터기를 이용한 스프레더 자세 인식 방법 연구 (The Spreader Pose Determination Research Using CCD Camera and Laser Range Finder)

  • 이봉기;박수민;진태석;이장명;이권순
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2002년도 추계공동학술대회논문집
    • /
    • pp.121-126
    • /
    • 2002
  • 이 논문은 항만에서 사용되는 크레인에 있어서 ALS(Automatic Landing System)를 위한 스프레더(spreader)의 이동정보 및 스큐각을 얻을 수 있는 방법을 소개 하고자 한다. 현재 사용되고 있는 ALS에서의 이동정보 획득방법은 3차원 laser scanner 일종인 모서리 감지기를 이용하거나, 다수의 레이저 거리미터기를 이용하는 방법이 주를 이루고 있다. 그러나 이러한 방법들은 경제성 면에서 그리고 성능면에서 각각 단점을 가진다 따라서 본 논문에서는 이러한 단점들을 개선하기 위해서 CCD 카메라를 이용한 영상처리와 레이저 거리 미터기를 이용하여 스프레더의 이동정도와 스큐각을 획득할 수 있는 방법을 제안한다.

  • PDF

데이터 재사용을 이용한 프랙탈 영상압축을 위한 효율적인 일차원 VLSI 어레이 (Efficient One-dimensional VLSI array using the Data reuse for Fractal Image Compression)

  • 이희진;이수진;우종호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 춘계종합학술대회
    • /
    • pp.265-268
    • /
    • 2001
  • 본 논문에서는 프랙탈 영상압축 알고리즘의 고속처리를 위한 효율적인 일차원 VLSI 어레이를 설계한다 프랙탈 영상압축 알고리즘은 영상을 정의역블럭과 치역블럭을 나누고, 블럭간의 자기유사성을 비교하여 데이터를 압축시킨다. 이때 정의역블럭은 치역블럭의 두배크기로 인접한 정의역블럭과 50% 중첩시켜 분할한다. 인접한 두 정의역 블럭의 픽셀들이 중첩되므로, 이 픽셀들을 재사용하여 데이터의 입력수를 줄이고 처리속도를 향상시킬수 있다. 이 결과 최소한의 레지스터와 MUX, DEMUX의 추가만으로 약 25%의 처리속도 향상을 얻을 수 있다.

  • PDF

Drone간 Ad hoc통신 시스템을 위한 Sub-GHz 저전력 원거리 MAC Protocol 연구 (Low Power and Long Range MAC Protocol for Inter-Drone communications based Sub-GHz Band)

  • 이준범;민진기;서효승;송동혁;김현정;손봉기;이재호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.90-93
    • /
    • 2016
  • 본 논문에서는 Sub-GHz band module을 Drone에 탑재하여 Drone과 전원공유로 Node(Drone)간 Low power and Long range Ad-hoc communication을 할 수 있는 방법을 제안하고자 한다. 또한 이동성이 있는 Node(Drone)의 Low power and Long range communication을 위해서 Drone에 적합한 Asynchronous MAC (medium access control) protocol을 비교분석하여 적용하였다. 본 고에서는 무선 센서 네트워크의 응용 범위가 확대되면서 고정된 인프라 없이 Drone간에 실시간 정보를 통신 할 수 있게 하고 사람의 이동이 어렵고 위험한 재난지역, 방사선노출지역 또는 우천시 유인기와 사람의 접근이 불가능한 지역을 Drone이 대신 이동하여 인명피해를 줄이고 안전하게 필요한 데이터를 수집하여 상황관제실로 전송하는 서비스를 제공하고자 한다.