• Title/Summary/Keyword: Range Finder

Search Result 181, Processing Time 0.023 seconds

A Study on Localization Methods for Autonomous Vehicle based on Particle Filter Using 2D Laser Sensor Measurements and Road Features (2D 레이저센서와 도로정보를 이용한 Particle Filter 기반 자율주행 차량 위치추정기법 개발)

  • Ahn, Kyung-Jae;Lee, Taekgyu;Kang, Yeonsik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.803-810
    • /
    • 2016
  • This paper presents a study of localization methods based on particle filter using 2D laser sensor measurements and road feature map information, for autonomous vehicles. In order to navigate in an urban environment, an autonomous vehicle should be able to estimate the location of the ego-vehicle with reasonable accuracy. In this study, road features such as curbs and road markings are detected to construct a grid-based feature map using 2D laser range finder measurements. Then, we describe a particle filter-based method for accurate positional estimation of the autonomous vehicle in real-time. Finally, the performance of the proposed method is verified through real road driving experiments, in comparison with accurate DGPS data as a reference.

An Efficient Outdoor Localization Method Using Multi-Sensor Fusion for Car-Like Robots (다중 센서 융합을 사용한 자동차형 로봇의 효율적인 실외 지역 위치 추정 방법)

  • Bae, Sang-Hoon;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.995-1005
    • /
    • 2011
  • An efficient outdoor local localization method is suggested using multi-sensor fusion with MU-EKF (Multi-Update Extended Kalman Filter) for car-like mobile robots. In outdoor environments, where mobile robots are used for explorations or military services, accurate localization with multiple sensors is indispensable. In this paper, multi-sensor fusion outdoor local localization algorithm is proposed, which fuses sensor data from LRF (Laser Range Finder), Encoder, and GPS. First, encoder data is used for the prediction stage of MU-EKF. Then the LRF data obtained by scanning the environment is used to extract objects, and estimates the robot position and orientation by mapping with map objects, as the first update stage of MU-EKF. This estimation is finally fused with GPS as the second update stage of MU-EKF. This MU-EKF algorithm can also fuse more than three sensor data efficiently even with different sensor data sampling periods, and ensures high accuracy in localization. The validity of the proposed algorithm is revealed via experiments.

Development of Precise Localization System for Autonomous Mobile Robots using Multiple Ultrasonic Transmitters and Receivers in Indoor Environments (다수의 초음파 송수신기를 이용한 이동 로봇의 정밀 실내 위치인식 시스템의 개발)

  • Kim, Yong-Hwi;Song, Ui-Kyu;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.353-361
    • /
    • 2011
  • A precise embedded ultrasonic localization system is developed for autonomous mobile robots in indoor environments, which is essential for autonomous navigation of mobile robots with various tasks. Although ultrasonic sensors are more cost-effective than other sensors such as LRF (Laser Range Finder) and vision, they suffer inaccuracy and directional ambiguity. First, we apply the matched filter to measure the distance precisely. For resolving the computational complexity of the matched filter for embedded systems, we propose a new matched filter algorithm with fast computation in three points of view. Second, we propose an accurate ultrasonic localization system which consists of three ultrasonic receivers on the mobile robot and two or more transmitters on the ceiling. Last, we add an extended Kalman filter to estimate position and orientation. Various simulations and experimental results show the effectiveness of the proposed system.

A 3D Map Building Algorithm for a Mobile Robot Moving on the Slanted Surface (모바일 로봇의 경사 주행 시 3차원 지도작성 알고리즘)

  • Hwang, Yo-Seop;Han, Jong-Ho;Kim, Hyun-Woo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.243-250
    • /
    • 2012
  • This paper proposes a 3D map-building algorithm using one LRF (Laser Range Finder) while a mobile robot is navigating on the slanted surface. There are several researches on 3D map buildings using the LRF. However most of them are performing the map building only on the flat surface. While a mobile robot is moving on the slanted surface, the view angle of LRF is dynamically changing, which makes it very difficult to build the 3D map using encoder data. To cope with this dynamic change of the view angle in build 3D map, IMU and balance filters are fused to correct the unstable encoder data in this research. Through the real navigation experiments, it is verified that the fusion of multiple sensors are properly performed to correct the slope angle of the slanted surface. The effectiveness of the balance filter are also checked through the hill climbing navigations.

An intelligent sensor controller of mobile robot for object recognition in an indoor known environment (이동로봇을 위한 위치 및 물체인식용 지능형 센서 제어 시스템)

  • Jeong, Tae-Cheol;Park, Jong-Seok;Hyun, Woong-Keun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.191-194
    • /
    • 2005
  • This paper represents an intelligent sensor controller of mobile robot for object recognition in an indoor known environment. A range finder sensor module has been developed by using optic PSD (Position Sensitive Detector) sensor array at a low price. While PSD sensor is cost effective and light weighting, it has switching noise and while noise. To remove these noises, we propose a heuristic filter. For line-based map building, also we proposed advanced Hough transformation and navigation algorism. Some experiments were illustrated for the validity of the developed system.

  • PDF

GML Based Tourism Information System for Location Based Service

  • Chung Yeong-Jee;Jeong Chang-Won
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.2
    • /
    • pp.80-83
    • /
    • 2005
  • At present, GML becomes the global standard for the XML encoding of geographic information and is the foundation for the Geo-Web. GML is being applied to a wide range of geographic applications including GIS and location-based services, telematics and intelligent transportation systems. In this paper, we propose the tourism information system for supporting the location based service application. We made an effort to design and implement a GIS computing environment by thin client for mobile web mapping service. We are interested in the GML applications that include traditional GIS system for navigation service and location finder for points of interest (POI) services. This paper summarizes the Tourism information system for location based service of a small area (Han-Ok Village with the Korean traditional houses in Jeonju-city), in which moving travelers can obtain proper information services at the current location associated with traditional monuments, cultural products, food, and conveniences. In the paper, we report on the design of the thin client/server system for a mobile environment. This paper is divided into three parts. First, we give a general overview of the organization of the system and of the important concerns of our design. Second we focus on our system supports for location and POI determination, and design concerns. Finally, we show the graphic user interface of PDA, the procedures involved in the service, and the executed results.

A Study of Extraction of Three-dimensional Spatial Information Utilizing the Parallax Error of a Multilens Smartphone Camera (멀티렌즈 스마트폰 카메라의 시차현상을 활용한 3차원 공간정보 획득 연구)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • We try to extract three-dimensional information, such as the distance from a camera and the actual width and height of an object, from still photographs by a multilens smartphone camera, by means of parallax error. To obtain this information, we develop several formulas and design a method for experimental instrumentation. If the results from this paper were included in algorithms of multilens smartphone cameras, there would be various kinds of applications, such as in the workplace of architectural and civil engineering to obtain an actual dimension, or on a golf course to measure how far away a pin flag is. We expect many more applications of this study, because the multilens smartphone camera is already an important necessity of life.

A Filter Design for Reducing Altitude Measurement Errors Arising during Aircraft Landing (항공기 착륙 시에 발생하는 고도측정 오차 개선을 위한 필터설계)

  • Song, Dae-Bum;Lim, Sang-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.3 no.2
    • /
    • pp.97-107
    • /
    • 1999
  • Passive sensors such as Laser Range Finder(LRF) and Forward Looking Infrared(FLIR) camera frequently used for tracking aircraft landing produce the measurements of elevation angle contaminated by large noise due to the exhaust plume disturbance. This results in poor tracking performance if the extended Kalman filter is used for estimation of the range and elevation which are corrupted by the non-Gaussian noise such as plume disturbance. In this paper, an adaptive estimation filter and the extended Kalman filter is combined to produce a combination-type filter. In this approach the adaptive filter is used for the plume-type disturbance noise and the extended Kalman filter is utilized for the measurement of Gaussian type. The proposed combination filter is effective for the trajectory estimation of landing aircraft under the influence of unknown bias and numerical simulations illustrate the performance of the proposed filter.

  • PDF

A Distance Measurement System Using a Laser Pointer and a Monocular Vision Sensor (레이저포인터와 단일카메라를 이용한 거리측정 시스템)

  • Jeon, Yeongsan;Park, Jungkeun;Kang, Taesam;Lee, Jeong-Oog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.422-428
    • /
    • 2013
  • Recently, many unmanned aerial vehicle (UAV) studies have focused on small UAVs, because they are cost effective and suitable in dangerous indoor environments where human entry is limited. Map building through distance measurement is a key technology for the autonomous flight of small UAVs. In many researches for unmanned systems, distance could be measured by using laser range finders or stereo vision sensors. Even though a laser range finder provides accurate distance measurements, it has a disadvantage of high cost. Calculating the distance using a stereo vision sensor is straightforward. However, the sensor is large and heavy, which is not suitable for small UAVs with limited payload. This paper suggests a low-cost distance measurement system using a laser pointer and a monocular vision sensor. A method to measure distance using the suggested system is explained and some experiments on map building are conducted with these distance measurements. The experimental results are compared to the actual data and the reliability of the suggested system is verified.

Goal-directed Obstacle Avoidance Using Lane Method (레인 방법에 기반한 이동 로봇의 장애물 회피)

  • Do, Hyun-Min;Kim, Yong-Shik;Kim, Bong-Keun;Lee, Jae-Hoon;Ohba, Kohtaro
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.121-129
    • /
    • 2009
  • This paper presents a goal-directed reactive obstacle avoidance method based on lane method. The reactive collision avoidance is necessarily required for a robot to navigate autonomously in dynamic environments. Many methods are suggested to implement this concept and one of them is the lane method. The lane method divides the environment into lanes and then chooses the best lane to follow. The proposed method does not use the discrete lane but chooses a line closest to the original target line without collision when an obstacle is detected, thus it has a merit in the aspect of running time and it is more proper for narrow corridor environment. If an obstacle disturbs the movement of a robot by blocking a target path, a robot generates a temporary target line, which is parallel to an original target line and tangential to an obstacle circle, to avoid a collision with an obstacle and changes to and follows that line until an obstacle is removed. After an obstacle is clear, a robot returns to an original target line and proceeds to the goal point. Obstacleis recognized by laser range finder sensor and represented by a circle. Our method has been implemented and tested in a corridor environment and experimental results show that our method can work reliably.

  • PDF