• 제목/요약/키워드: Range Calibration Error

검색결과 186건 처리시간 0.035초

Raman spectroscopic analysis to detect olive oil mixtures in argan oil

  • Joshi, Rahul;Cho, Byoung-Kwan;Joshi, Ritu;Lohumi, Santosh;Faqeerzada, Mohammad Akbar;Amanah, Hanim Z;Lee, Jayoung;Mo, Changyeun;Lee, Hoonsoo
    • 농업과학연구
    • /
    • 제46권1호
    • /
    • pp.183-194
    • /
    • 2019
  • Adulteration of argan oil with some other cheaper oils with similar chemical compositions has resulted in increasing demands for authenticity assurance and quality control. Fast and simple analytical techniques are thus needed for authenticity analysis of high-priced argan oil. Raman spectroscopy is a potent technique and has been extensively used for quality control and safety determination for food products In this study, Raman spectroscopy in combination with a net analyte signal (NAS)-based methodology, i.e., hybrid linear analysis method developed by Goicoechea and Olivieri in 1999 (HLA/GO), was used to predict the different concentrations of olive oil (0 - 20%) added to argan oil. Raman spectra of 90 samples were collected in a spectral range of $400-400cm^{-1}$, and calibration and validation sets were designed to evaluate the performance of the multivariate method. The results revealed a high coefficient of determination ($R^2$) value of 0.98 and a low root-mean-square error (RMSE) value of 0.41% for the calibration set, and an $R^2$ of 0.97 and RMSE of 0.36% for the validation set. Additionally, the figures of merit such as sensitivity, selectivity, limit of detection, and limit of quantification were used for further validation. The high $R^2$ and low RMSE values validate the detection ability and accuracy of the developed method and demonstrate its potential for quantitative determination of oil adulteration.

MEMS 센서 기반 고정밀 기울기 모니터링 시스템 설계 (Development of MEMS Sensor-based High Resolution Tilt Monitoring System)

  • 손영달;은창수
    • 한국정보통신학회논문지
    • /
    • 제23권11호
    • /
    • pp.1364-1370
    • /
    • 2019
  • 건축물이나 교량, 터널과 같은 구조물의 붕괴를 측정하기 위하여 기울기 센서를 사용하고 있으며 최근에는 사용성이 편리하고 가격이 저렴하여 MEMS(Micro-Electro-Mechanical System) 센서를 사용한 기울기 센서를 많이 사용하고 있으나 측정 범위가 한정되어 있어 360도 전 방위에 대해 고정밀도를 가지지는 못하고 있다. 이것은 MEMS 센서가 갖는 오프셋과 스케일 오차 때문이다. 본 논문에서는 MEMS 센서가 갖는 기계적 오차를 줄이기 위하여 정밀도가 높은 각도 계산을 위한 알고리즘을 제시하였고 MEMS 센서 모듈과 전송 모듈을 제작하여 교정 전 센서 모듈의 각도 정확도와 교정 후 각도 측정 정확도를 비교하여 교정 알고리즘의 효과를 제시하였으며, 실험 결과 제안 기술을 적용하였을 때 360도 전 방위에 대해 ±0.015도의 정밀도를 가짐을 확인하였다.

역상 액체 크로마토그래피에 의한 몇가지 금속 이온들의 Piperidinedithiocarbamate 킬레이트 동시분리분석 (Simultaneous Separation Analysis of Some Metal Ions in Piperidinedothiocarbamate Chelates by Reversed-Phase Liquid Chromatography)

  • 이원;방승훈;김미경
    • 분석과학
    • /
    • 제13권1호
    • /
    • pp.27-33
    • /
    • 2000
  • 역상 액체크로마토그래피를 이용하여 Ni(II), Pd(II), Co(II), Cu(II) 및 Hg(II) 이온과 peperidinedithiocarbamate (PDTC)가 형성하는 킬레이트들을 분리하고, 금속이온의 동시 정량을 시도하였다. Novapak $C_{18}$ 분리관에서 methanol/water 혼합용액을 용리액으로 사용하고 pH, 추출용매의 종류 및 이동상의 세기 등 분리도에 영향을 주는 몇 가지 인자들의 영향을 조사하였으며, 각 금속 PDTC 킬레이트의 용매세기인자 범위는 $0{\leq}log\;k^{\prime}{\leq}1$의 범위임을 확인하였다. 각 금속이온들의 검정곡선은 $0{\sim}1.2{\mu}g/mL$의 농도범위에서 직선관계가 잘 성립하는 것을 확인하였으며, 상대표준편차는 1.96~3.31% 범위로 재현성있는 결과를 얻었다. 최적 분리 조건에서 합성시료 중에 함유된 미량 금속이온들은 상대오차 ${\pm}2.0%$ 범위내에서 동시분리 정량이 가능하였다.

  • PDF

Development and Validation of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of ε-Acetamidocaproic Acid in Rat Plasma

  • Kim, Tae Hyun;Choi, Yong Seok;Choi, Young Hee;Kim, Yoon Gyoon
    • Toxicological Research
    • /
    • 제29권3호
    • /
    • pp.203-209
    • /
    • 2013
  • A simple and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of ${\varepsilon}$-acetamidocaproic acid (AACA), the primary metabolite of zinc acexamate (ZAC), in rat plasma by using normetanephrine as an internal standard. Sample preparation involved protein precipitation using methanol. Separation was achieved on a Gemini-NX $C_{18}$ column ($150mm{\times}2.0mm$, i.d., 3 ${\mu}m$ particle size) using a mixture of 0.1% formic acid-water : acetonitrile (80 : 20, v/v) as the mobile phase at a flow rate of 200 ${\mu}l/min$. Quantification was performed on a triple quadrupole mass spectrometer employing electrospray ionization and operating in multiple reaction monitoring (MRM) and positive ion mode. The total chromatographic run time was 4.0 min, and the calibration curves of AACA were linear over the concentration range of 20~5000 ng/ml in rat plasma. The coefficient of variation and relative error at four QC levels were ranged from 1.0% to 5.8% and from -8.4% to 6.6%, respectively. The present method was successfully applied for estimating the pharmacokinetic parameters of AACA following intravenous or oral administration of ZAC to rats.

In Situ Estimation of the Constituents of Green Soybean (Edamame) Pod using Near-Infrared Transmission Spectroscopy

  • Suzuki, Michiru;Katahira, Mitsuhiko;Natsuga, Motoyasu
    • Journal of Biosystems Engineering
    • /
    • 제39권4호
    • /
    • pp.352-356
    • /
    • 2014
  • Purpose: We estimated the dietary qualities of green soybean (edamame) by using a specialized NIR transmission spectrometer to determine the constitutive properties of the soybean, such as the sucrose content and ninhydrine reaction quantity (NRQ; defined by the ninhydrine reaction, which has a high positive correlation with the total free amino acids), with the purpose of establishing a quality assurance system. Methods: We used a newly developed spectrometer probe that enables in situ estimation of the constituents of the soybean. Results: The calibration results obtained using a wavelength range of 760-960 nm were characterized by $R^2$ = 0.57 and standard error of cross-validation (SECV) of 0.78% for sucrose, and $R^2$ = 0.59 and SECV = 0.35% for NRQ. Conclusions: These results are inferior to those of our previous study obtained using a specialized bench-type transmission spectrometer. The poorer results are attributed to several possible reasons, including the effect of direct sunlight and the unstable sample presentation. We plan to conduct further study using improved optical layout and sample presentation.

A CMOS-based Temperature Sensor with Subthreshold Operation for Low-voltage and Low-power On-chip Thermal Monitoring

  • Na, Jun-Seok;Shin, Woosul;Kwak, Bong-Choon;Hong, Seong-Kwan;Kwon, Oh-Kyong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권1호
    • /
    • pp.29-34
    • /
    • 2017
  • A CMOS-based temperature sensor is proposed for low-voltage and low-power on-chip thermal monitoring applications. The proposed temperature sensor converts a proportional to absolute temperature (PTAT) current to a PTAT frequency using an integrator and hysteresis comparator. In addition, it operates in the subthreshold region, allowing reduced power consumption. The proposed temperature sensor was fabricated in a standard 90 nm CMOS technology. Measurement results of the proposed temperature sensor show a temperature error of between -0.81 and $+0.94^{\circ}C$ in the temperature range of 0 to $70^{\circ}C$ after one-point calibration at $30^{\circ}C$, with a temperature coefficient of $218Hz/^{\circ}C$. Moreover, the measured energy of the proposed temperature sensor is 36 pJ per conversion, the lowest compared to prior works.

재난감시용 하천 CCTV를 활용한 홍수유출량 산정 (Flood Runoff Calculation using Disaster Monitoring CCTV System)

  • 김용석;양성기;류권규;김동수
    • 한국환경과학회지
    • /
    • 제23권4호
    • /
    • pp.571-584
    • /
    • 2014
  • The present study aims to apply a surface image velocimetry(SIV) system to video images captured with CCTV and estimate the flood discharge. The CCTV was installed at the Hancheon Bridge of the Han Cheon in Jeju Island for disaster surveillance, and seven flood events occurred in 2012 were used. During the image analyses, input parameters, interrogation areas and searching areas were determined with proper calibration procedures. To check for accuracy and applicability of SIV, the velocities and flood discharges estimated by SIV were compared with the measured ones by an electromagnetic surface velocimeter, Kalisto. The comparison results showed fairly good agreements. The RMSE(Root Mean Square Error) values between two instruments showed a range of 4.13 and 14.2, and the determination coefficients reached 0.75 through 0.85. It means that the SIV could be used as a good alternative method for other traditional velocity measuring instruments in measuring flood discharges.

Determination of Seed Lipid and Protein Contents in Perilla and Peanut by Near-Infrared Reflectance Spectroscopy

  • Oh, Ki-Won;Choung, Myoung-Gyun;Pae, Suk-Bok;Jung, Chan-Sik;Kim, Byung-Joo;Kwon, Yil-Chan;Kim, Jung-Tae;Kwack, Yong-Ho
    • 한국작물학회지
    • /
    • 제45권5호
    • /
    • pp.339-342
    • /
    • 2000
  • Near-infrared reflectance spectroscopy (NIRS) was used to estimate the lipid and protein contents in ground seed samples of perilla (Perilla frutescens Brit.) and peanut (Arachis hypogaea L.). A total of 46 perilla and 80 peanut calibration samples and 23 perilla and 46 pea. nut NIRS validation samples were used for NIRS equation development and validation, respectively. Validation of these NIRS equations showed a range of very low bias (-0.05 to 0.13 %) and standard error of prediction corrected for bias (0.224 to 0.803%) and very high coefficient of determination ($R^2$) (0.962 to 0.985). It was concluded that NIRS could be adapted as a mass screening method for lipid and protein contents in perilla and peanut seed.

  • PDF

실시간 토양 유기물 센서와 DGPS를 이용한 질소 시비량 지도 작성 시스템 개발 (Development of Electronic Mapping System for N-fertilizer Dosage Using Real-time Soil Organic Matter Sensor)

  • 조성인;최상현;김유용
    • Journal of Biosystems Engineering
    • /
    • 제27권3호
    • /
    • pp.259-266
    • /
    • 2002
  • It is crucial to know spatial soil variability for precision farming. However, it is time-consuming, and difficult to measure spatial soil properties. Therefore, there are needs fur sensing technology to estimate spatial soil variability, and for electronic mapping technology to store, manipulate and process the sampled data. This research was conducted to develop a real-time soil organic matter sensor and an electronic mapping system. A soil organic matter sensor was developed with a spectrophotometer in the 900∼1,700 nm range. It was designed in a penetrator type to measure reflectance of soil at 15cm depth. The signal was calibrated with organic matter content (OMC) of the soil which was sampled in the field. The OMC was measured by the Walkeley-Black method. The soil OMCs were ranged from 0.07 to 7.96%. Statistical partial least square and principle component regression analyses were used as calibration methods. Coefficient of determination, standard error prediction and bias were 0.85 0.72 and -0.13, respectively. The electronic mapping system was consisted of the soil OMC sensor, a DGPS, a database and a makeshift vehicle. An algorithm was developed to acquire data on sampling position and its OMC and to store the data in the database. Fifty samples in fields were taken to make an N-fertilizer dosage map. Mean absolute error of these data was 0.59. The Kring method was used to interpolate data between sampling nodes. The interpolated data was used to make a soil OMC map. Also an N-fertilizer dosage map was drawn using the soil OMC map. The N-fertilizer dosage was determined by the fertilizing equation recommended by National Institute of Agricultural Science and Technology in Korea. Use of the N-fertilizer dosage map would increase precision fertilization up to 91% compared with conventional fertilization. Therefore, the developed electronic mapping system was feasible to not only precision determination of N-fertilizer dosage, but also reduction of environmental pollution.

발색시약 Blue Tetrazolium Chloride를 이용한 잎담배중 환원당의 비색법적 정량. (The Spectrophotometric Determination of Reducing Sugar in the Tobacco Leaves by losing a Color Developing Reagent, Blue Tetrazolium Chloride.)

  • 이문수;김신일
    • 한국연초학회지
    • /
    • 제2권2호
    • /
    • pp.38-43
    • /
    • 1980
  • Blue tetraEolium chloride를 발색시약으로 사용하여 잎담배중의 환원당을 흡수분광 광도번에 의해 정량하는 방법을 연구 하였다. Blue tetrolium과 환원당과의 환원반응에서 생성된 formazan dye의 극대흡수파장은 $530^{nm}$ 였으며 fructose농도가 0.02mg/ml-0.14mg/ml범위내에서는 Beer-Lambert법칙에 잘 일치함을 보여 주었다. 이 방법에 의한 환원당 정량의 정확성을 알아보기 위하여 표준 fructose를 잎담배중에 첨가한 후 이 표준 환원당의 농도를 계산하여 보니, 당시의 농도보다 적은 값을 얻었다. 그러나 상대오차 -2%이하로서 비교적 분석적 재현성이 좋게 나타났다. 흡수분광광도계를 사용하지 아니하고 Visual read out방법으로 왑원당을 정량하였을 경우,그 상대오차가 $\pm$10%범위로 나타났다.

  • PDF