기존 Hough transform을 이용한 타원 검출의 수행 속도와 개수의 추정을 개선하기 위해 본 논문에서는 선분 세그먼트 기반 Randomized Hough Transform (RHT)을 제안한다. 제안하는 방법은 에지 영상을 선분 세그먼트 단위로 분할한 후 임의의 선분 세그먼트 쌍을 RHT를 이용해서 타원을 추정하여 병합여부를 판단한다. 이와 같이 선분 세그먼트 단위로 RHT를 적용하면 적은 반복수행으로 타원을 추정할 수 있으며 복잡한 에지 영상에서도 보다 정확한 타원의 개수를 추정할 수 있다. 제안된 방법의 효율성은 계산속도 및 타원검출의 정확도로 평가하였으며 다양한 입력영상에 대한 실험을 통해 입증하였다.
In this study, the image processing program for deducing parameters of the elliptic shape of the partially overlapped liquid droplets was developed using the randomized Hough transform and the parameter decomposition. The procedure for the shape detection consists of three steps. For the first step, the candidate centers of ellipses are determined by the geometric property of the ellipse. Next, the rest parameters are estimated by the randomized Hough transform. In the final step for the post-processing, optimally approximated parameters of ellipses are determined. The developed program was applied to the simulated overlapped ellipses, real overlapped droplets, and real spray droplets. The shape detection was very excellent unless there existed inherent problems in original images. Moreover, this method can be used as an effective separating method for the overlapped small particles.
In this study, the image processing program for deducing parameters of the elliptic shape of the partially overlapped liquid droplets was developed using the randomized Hough transform and the parameter decomposition. The procedure for the shape detection consists of three steps. For the first step, the candidate centers of ellipses are determined by the geometric property of the ellipse. Next, the rest parameters are estimated by the randomized Hough transform. In the final step for the post-processing, optimally approximated parameters of ellipses are determined. The developed program was applied to the simulated overlapped ellipses, real overlapped droplets, and real spray droplets. The shape detection was very excellent unless there existed inherent problems in original images. Moreover, this method can be used as an effective separating method for the overlapped small particles.
본 논문에서는 입력 영상의 에지를 단일 세그먼트로 구성하고 같은 타원에 속하는 에지 세그먼트를 병합하여 타원검출의 속도와 정확도를 향상시키는 방법을 제안한다. 먼저 분기점은 이용한 라벨링 기법과 코너 패턴 정합 기법으로 연속된 화소들의 집합인 에지 세그먼트를 만든다. 구성된 에지 세그먼트와 Randomized Hough Transform에 의해 타원을 추정하여 병합하고 타원을 결정한다. 위 과정으로부터 얻어진 병합된 에지 세그먼트 집합 하나가 타원 하나를 구성하므로 입력 영상 내의 전체 타원의 개수를 정확하게 추정할 수 있다. 또한 전체 에지 화소들로 타원을 검출하는 기존 방법과 달리 분리된 에지 세그먼트 단위로 타원 변수를 결정하기 때문에 전체 수행시간을 크게 줄일 수 있다.
Plane detection is very important information for mission-critical of robot in 3D environment. A representative method of plane detection is Hough-transformation. Hough-transformation is robust to noise and makes the accurate plane detection possible. But it demands excessive memory and takes too much processing time. Iterative randomized Hough-transformation has been proposed to overcome these shortcomings. This method doesn't vote all data. It votes only one value of the randomly selected data into the Hough parameter space. This value calculated the value of the parameter of the shape that we want to extract. In Hough parameters space, it is possible to detect accurate plane through detection of repetitive maximum value. A common problem in these methods is that it requires too much computational cost and large number of memory space to find the distribution of mixed multiple planes in parameter space. In this paper, we detect multiple planes only via data sampling using Self Organizing Map method. It does not use conventional methods that include transforming to Hough parameter space, voting and repetitive plane extraction. And it improves the reliability of plane detection through division area searching and planarity evaluation. The proposed method is more accurate and faster than the conventional methods which is demonstrated the experiments in various conditions.
Finding a planar surface on 3D space is very important for efficient and safe operation of a mobile robot. In this paper, we propose a method using a plane detection cell (PDC) and iterative randomized Hough transform (IRHT) for finding the planar region from a 3D range image. First, the local planar region is detected by a PDC from the target area of the range image. Each plane is then segmented by analyzing the accumulated peaks from voting the local direction and position information of the local PDC in Hough space to reduce effect of noises and outliers and improve the efficiency of the HT. When segmenting each plane region, the IRHT repeatedly decreases the size of the planar region used for voting in the Hough parameter space in order to reduce the effect of noise and solve the local maxima problem in the parameter space. In general, range images have many planes of different normal directions. Hence, we first detected the largest plane region and then the remained region is again processed. Through this procedure, we can segment all planar regions of interest in the range image.
This paper suggests a judgement method for an inclined plane before entrance of it and the detection of obstacle position. Main idea is started from the assumption that obstacle is always on the bottom plane, and corner appears at this position. The process to detect the obstacle consists of three steps. First the 3D data using stereo matching is acquired to detect an obstacle. Second a bottom plane is extracted by using limit condition. Last the obstacle position is found by using Harris corner detection. Obstacle position detection on an inclined plane was verified by outdoor and indoor experiment. In error analysis, it is confirmed that an average error of obstacle detection in outdoor was larger than the error in indoor but the error are within about 0.030 m. This method will be applied to unmanned vehicles to navigate under various environment.
This study proposed the new method of discerning the assembled parts and presuming the position of central point in a Cowl Cross Bar (CCB) using a Charge-Couple Device (CCD) camera attached to a robot in the auto assembly line. Three control points of an ellipse were decided by three reference points, which were equally distanced. The radii of these reference points were determined by the size of the object, and the repeated presumption secured the precise determination. The comparison of the central point of ellipse presumed by Randomized Hough Transform (RHT) with the part information stored in a database was used for determining the faulty part in an assembly. The method proposed in this study was applied for the real-time inspection of elliptical parts, such as bolt, nut hole and so on, connected to a CCB using a CCD camera. The findings of this study showed that the precise decision on whether the parts are inferior or not can be made irrespective of the lighting condition of industrial site and the noises of the surface of the part. In addition, the defect decision on the individual elliptic parts assembled in a CCB showed more than 98% accuracy within a 500-millisecond period at most.
After emerging of Microsoft Kinect, the interest in three-dimensional (3D) depth image was significantly increased. Depth image data of an object can be converted to 3D coordinates by simple arithmetic calculation and then can be reconstructed as a 3D model on computer. However, because the surface coordinates can be acquired only from the front area facing Kinect, total solid which has a closed surface cannot be reconstructed. In this paper, 3D registration method for multiple Kinects was suggested, in which surface information from each Kinect was simultaneously collected and registered in real time to build 3D total solid. To unify relative coordinate system used by each Kinect, 3D perspective transform was adopted. Also, to detect control points which are necessary to generate transformation matrix, 3D randomized Hough transform was used. Once transform matrices were generated, real time 3D reconstruction of various objects was possible. To verify the usefulness of suggested method, human arms were 3D reconstructed and the volumes of them were measured by using four Kinects. This volume measuring system was developed to monitor the level of lymphedema of patients after cancer treatment and the measurement difference with medical CT was lower than 5%, expected CT reconstruction error.
본 연구에서는 고해상도 위성영상인 TerraSAR-X와 WorldView-2 등을 융합하여 표적의 특성을 고려한 표적군(Group of targets) 검출을 수행하였다. 관심 대상으로 하는 표적은 고정되어 있으며, 군(Group)을 이루고 있는 특징이 있다. 표적 후보를 검출하기 위해 대상 물체의 레이더 후방산란 특성을 이용한 Constant False Alarm Rate (CFAR) 알고리즘을 적용하였다. 검출된 표적 후보군으로부터 비표적을 제거하기 위해 표적의 크기 정보를 이용한 화소 클러스터링, 표적군을 이루는 표적들간의 배치 특성을 이용한 네트워크 클러스터링. 그리고 SAR 간섭기법 적용이 가능한 간섭쌍이 있는 경우 긴밀도 정보를 이용하였다. 또한, 오경보(False Alarm)를 감소시키고 최종 표적을 결정하기 위해, 표적의 형태 정보를 추출할 수 있는 Electro-Optical (EO) 영상을 바탕으로 효과적인 타원 검출 기법을 개발하였다. 개발된 표적군 검출 알고리즘을 10개 지역에 적용한 결과, 표적군 검출율은 100%, 단일 표적에 대한 오경보율은 0.03~0.3개/$km^2$, 평균 오경보는 1.8군/$64km^2$로 낮은 오경보와 높은 검출율을 보이며 표적군이 검출되었다. 본 연구에서 개발된 표준화된 표적 검출 기법은 향후 무인화된 표적 검출 시스템 구축에 핵심적인 기술이 될 것으로 전망한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.