• 제목/요약/키워드: Random vibration test

검색결과 126건 처리시간 0.025초

Force limited vibration testing: an evaluation of the computation of C2 for real load and probabilistic source

  • Wijker, J.J.;de Boer, A.;Ellenbroek, M.H.M.
    • Advances in aircraft and spacecraft science
    • /
    • 제2권2호
    • /
    • pp.217-232
    • /
    • 2015
  • To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the load (test item), $C^2$ is a very important parameter for FLVT. A number of computational methods to estimate $C^2$ are described in the literature, i.e., the simple and the complex two degrees of freedom system, STDFS and CTDFS, respectively. The motivation of this work is to evaluate the method for the computation of a realistic value of $C^2$ to perform a representative random vibration test based on force limitation, when the adjacent structure (source) description is more or less unknown. Marchand discussed the formal description of getting $C^2$, using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between load and source. Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of modal effective masses and the spring stiffness's associated with the natural frequencies. When the random acceleration vibration specification is given the CSMA method is suitable to compute the value of the parameter $C^2$. When no mathematical model of the source can be made available, estimations of the value $C^2$ can be find in literature. In this paper a probabilistic mathematical representation of the unknown source is proposed, such that the asparagus patch model of the source can be approximated. The chosen probabilistic design parameters have a uniform distribution. The computation of the value $C^2$ can be done in conjunction with the CSMA method, knowing the apparent mass of the load and the random acceleration specification at the interface between load and source, respectively. Data of two cases available from literature have been analyzed and discussed to get more knowledge about the applicability of the probabilistic method.

음향 가진에 의한 로켓 탑재부의 동적 응답 해석 및 시험 (Analysis and Test of Dynamic Responses of Rocket Payload Section Induced by Acoustic Excitation)

  • 박순홍;정호경;서상현;장영순;이영무;조광래
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.717-720
    • /
    • 2005
  • Acoustic loads generated by a rocket propulsion system cause severe random vibrations on payloads. In developing a new launch vehicle, a random vibration level must be specified before the detailed design of payloads or electronic equipments. This paper deals with prediction procedures of a random vibration level on payload section of KSLV-I. The prediction is based on statistical energy analysis. In order to verify the prediction methodology, test and analysis on a sub-scale payload section are performed. The predicted results subject to very high level of acoustic loads show a good agreement with the test results performed in the high intensity acoustic chamber. The predicted random vibration level on payload section of KSLV-I is also presented in this paper.

  • PDF

진동 시험 기법의 적용에 관한 고찰 (A Study on Application of Vibration Testing Method)

  • 이창훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.587-591
    • /
    • 2012
  • Review of practical vibration test methods those applied in various industrial fields - such as automotive industry, electrics and electronics industry, defense industry and aerospace industry - is described on this paper. Swept sine test, random vibration test and advanced vibration techniques are explained according to their parametric values and also application fields of each test method are suggested by the characteristic of each method. For more proper application of each test method, standardized test specifications should be always reviewed and revised according to the transition of environmental factors.

  • PDF

위성체 설계를 위한 랜덤 진동 해석 (Random Vibration Analysis for Satellite Design)

  • 이원범;김경원
    • 항공우주기술
    • /
    • 제5권2호
    • /
    • pp.102-107
    • /
    • 2006
  • 본 논문은 위성체 동적 환경의 발사체 구조에 의해 전달된 저 주파수의 과도 진동과 불 규칙적인 가속력으로 구성되어 있다. 저 주파수에서의 과도 진동은 보통 진동수 100 ~ 200Hz에 이르는 정현파로 근사되며 주로 예비설계에 사용된다. 그리고, 랜덤 환경은 발사체의 연소와 분리 단계, 외부 공력소 음에 의한 구조적 진동에 의해 발생한다. 이는 발사체 구조물을 통하여 위성체와 발사체의 어댑터 구조로 전달된다. 이러한 동적환경 중에서 랜덤 진동 해석은 위성체에 수행되는데, 특히, 위성체 내의 전자 박스(장비) 는 실제 상황에 가깝게 하여 검증하기 위해 랜덤 진동 실험을 통해 설계 되야 한다.

  • PDF

통신위성 중계기 부품의 진동특성 해석 (Vibration Characteristics Analysis of the Communication Satellite Transponder Equipment)

  • 김현수;이명규;박종흥;김성종;이영신
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.374-379
    • /
    • 2001
  • The satellite electronic equipment is exposed to high level random vibration environment during the launch of spacecraft. The random vibration can cause damage of electronic equipment. Thus very careful consideration on the launch environment, especially for high level random vibration, is required in the design stage of transponder equipments of communication satellite. For the structural integrity of the communication satellite transponder equipment under qualification level random vibration, Finite Element analysis was carried out using the commercial code, MSC/Nastran and ANSYS and stress levels are presented. In order to validate the femodel, modal test was also performed and compared with numerical results.

  • PDF

발사환경에 대한 위성 전장품의 구조진동 해석 (Structural Vibration Analysis of Electronic Equipment for Satellite under Launch Environments)

  • 정일호;박태원;한상원;서종휘;김성훈
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.120-128
    • /
    • 2004
  • The impulse between launch vehicle and atmosphere can generate a lot of noise and vibration during the process of launching a satellite. Structurally, the electronic equipment of a satellite consists of an aluminum case containing PCB. Each PCB has resistors and IC. Noise and vibration of the wide frequency band are transferred to the inside of fairing, subsequently creating vibration of the electronic equipment of the satellite. In this situation, random vibration can cause malfunctioning of the electronic equipment of the device. Furthermore, when the frequency of random vibration meets with natural frequency of PCB, fatigue fracture may occur in the part of solder joint. The launching environment, thus, needs to be carefully considered when designing the electronic equipment of a satellite. In general, the safety of the electronic equipment is supposed to be related to the natural frequency, shapes of mode and dynamic deflection of PCB in the electronic equipment. Structural vibration analysis of PCB and its electronic components can be performed using either FEM or vibration test. In this study, the natural frequency and dynamic deflection of PCB are measured by FEM, and the safety of the electronic components of PCB is evaluated according to the results. This study presents a unique method for finite element modeling and analysis of PCB and its electronic components. The results of FEA are verified by vibration test. The method proposed herein may be applicable to various designs ranging from the electronic equipments of a satellite to home electronics.

랜덤진동제어에서 치구성능향상을 위한 기준스펙트럼의 최적화에 대한 연구 (A study on Optimization of Reference Spectrum for Improvement of Fixture Performance in Random Vibration Control)

  • 김준엽;정의봉
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.284-291
    • /
    • 1995
  • This paper proposes a method for determination of optimal reference spectrum in random vibration control. The least square method is used to minimize the spectrum deviation between the specified reference spectrum and spectra at the specimen-mounted points. This method needs only the measured FRF's at the control point and specimen-mounted points in pre-vibration test. Using the proposed method as reference spectrum, it is possible to easily predict spectra at the specimen-mounted points, and also to reduce overtest resulting from dynamic characteristics of shaker and fixture. This method is shown through theoretical and experimental results to be an effective method.

택배용 포장시스템이 적용된 과실의 랜덤 진동특성 (Random Vibration Characteristics of Fruits in Packaging System for Parcel Delivery Service)

  • 정현모;김수일
    • 한국포장학회지
    • /
    • 제21권2호
    • /
    • pp.67-71
    • /
    • 2015
  • Shock and vibration inputs are transmitted from the transporting vehicle through the packaging to the fruit during the parcel delivery service. The vibration causes sustained bouncing of fruits against each other and the container wall. The steady state vibration input may cause serous fruit injury, and the damage is particularly severe if the fruits are bounced at its resonance frequency. The determination of the resonance frequencies of the fruits and vegetables may help the packaging designer to determine the proper packaging system providing adequate protection for the fruits, and to understand the complex interaction between the components of the fruits when they relate to expected transportation vibration inputs. To analyze the vibration properties of the apples for optimum packaging design during transportation for parcel delivery service, random vibration tests were carried out. In the random vibration test, the resonance frequency and PSD of the apples in packaging system for parcel delivery service in the test were in the range of 13 to 99 Hz and $0.0143{\sim}0.0923G^2/Hz$.

  • PDF

트럭 운송시 맥주용 유리병의 진동 및 낙하 특성 (Vibration Characteristics and Drop Impacts of Bear Glass Bottles During Truck Transit)

  • 박수일;박인식
    • 한국포장학회지
    • /
    • 제15권3호
    • /
    • pp.77-81
    • /
    • 2009
  • 음료와 맥주 제품의 경우 신선도를 유지하기 목적으로 다양한 종류의 유리병이 국내에서 생산되거나 수입되어 유통되고 있다. 실제 트럭으로 국내 운송되는 맥주 유리병 제품의 유통환경에서 진동 특성을 분석하고 이를 바탕으로 트럭 불규칙 진동 특성인 0.52 $G_{rms}$을 진동시험 규격으로 적용하여 예측실험을 실시하였으며, 결론적으로 유리병의 자체의 파손은 관측되지 않았다. 트럭의 적재함 위치별 상하진동 수준에 있어서는 뒷부분에 위치한 가속도계에서 가장 큰 진동 특성(0.17 $G_{rms}$)이 나타났으며, 앞 부분(0.11 $G_{rms}$)과 중간 부분(0.12 $G_{rms}$)은 큰 차이를 보이지 않았다. 낙하 높이와 제품 용량의 종류에 관계없이 바닥면으로 낙하된 유리병의 경우 파손은 관측되지 않았다. 단측면 낙하 시 가장 큰 유리병 파손율을 보였으며, 장측면에 비해 약 2배 높은 유리병 파손율을 나타내었다.

  • PDF