• Title/Summary/Keyword: Random valued impulse noise

Search Result 9, Processing Time 0.03 seconds

A Study on Image Restoration Algorithm in Random-Valued Impulse Noise Environment

  • Yinyu, Gao;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.331-335
    • /
    • 2011
  • Digital images are often corrupted by impulse noise, and it is very important to remove random-valued impulse noise. Cleaning such noise is far more difficult than cleaning salt and pepper impulse noise. In this paper, we proposed an efficient way to remove random-valued impulse noise from digital images. This novel method comprises two stages. The first stage is to detect the random-valued impulse noise in the image and the pixels are roughly divided into two classes, which are "noise-free pixel" and "noise pixel". Then, the second stage is to eliminate the random-valued impulse noise from the image. In this stage, only the "noise pixels" are processed. The "noise-free pixels" are copied directly to the output image. Simulation results indicated that our method provides a significant improvement over many other existing algorithms.

The Study on Removing Random-valued Impulse Noise

  • Yinyu, Gao;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.333-335
    • /
    • 2011
  • In the transmitting process of image processing system, images always be corrupted by impulse noise, especially random-valued impulse noise. So removing the random-valued impulse noise is very important, but it is also one of the most difficult case in image processing. The most famous method is the standard median filter, but at edge, the filter has a special feature which has a tendency to decrease the preserve. As a result, we proposed a filter that detection random-valued impulse noise firstly, next to use efficient method to remove the noise and preserve the details. And through the simulation, we compared with the algorithms and indicated that proposed method significant improvement over many other existing algorithms.

  • PDF

Dual Sliding Statistics Switching Median Filter for the Removal of Low Level Random-Valued Impulse Noise

  • Suid, Mohd Helmi;Jusof, M F.M.;Ahmad, Mohd Ashraf
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1383-1391
    • /
    • 2018
  • A new nonlinear filtering algorithm for effectively denoising images corrupted by the random-valued impulse noise, called dual sliding statistics switching median (DSSSM) filter is presented in this paper. The proposed DSSSM filter is made up of two subunits; i.e. Impulse noise detection and noise filtering. Initially, the impulse noise detection stage of DSSSM algorithm begins by processing the statistics of a localized detection window in sorted order and non-sorted order, simultaneously. Next, the median of absolute difference (MAD) obtained from both sorted statistics and non-sorted statistics will be further processed in order to classify any possible noise pixels. Subsequently, the filtering stage will replace the detected noise pixels with the estimated median value of the surrounding pixels. In addition, fuzzy based local information is used in the filtering stage to help the filter preserves the edges and details. Extensive simulations results conducted on gray scale images indicate that the DSSSM filter performs significantly better than a number of well-known impulse noise filters existing in literature in terms of noise suppression and detail preservation; with as much as 30% impulse noise corruption rate. Finally, this DSSSM filter is algorithmically simple and suitable to be implemented for electronic imaging products.

A Study on Cascade Filter Algorithm for Random Valued Impulse Noise Elimination (랜덤 임펄스 잡음제거를 위한 캐스케이드 필터 알고리즘에 관한 연구)

  • Yinyu, Gao;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.598-604
    • /
    • 2012
  • Image signal is corrupted by various noises in image processing, many studies are being accomplished to restore those images. In this paper, we proposed a cascade filter algorithm for removing random valued impulse noise. The algorithm consists two steps that noise detection and noise elimination. Variance of filtering mask and center pixel variance are calculated for noise detection, and the noise pixel is replaced by estimated value which first apply switching self adaptive weighted median filter and finally processed by modified weight filter. Considering the proposed algorithm only remove noise and preserve the uncorrupted information that the algorithm can not only remove noise well but also preserve edge.

A Study on Image Reconstructing Algorithm in Uniformly Distributed Impulsive Noise Environment (균등 분포된 임펄스 잡음 환경에서의 영상 복원 알고리즘에 관한 연구)

  • Noh Hyun-Yong;Bae Sang-Bum;Kim Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.1001-1004
    • /
    • 2006
  • Many researches have been processed to reconstruct corrupted an image by noise in fields of signal processing such as image recognition and compute. vision, and AWGN(additive white gaussian noise) and impulse noise are representative. Impulse noise consists of fired-valued(salt & pepper) impulse noise and random-valued impulse noise, and non-linear filters such as SM(standard median) filters are used to remove this noise. But basic SM filters still generate many errors in edge regions of an image, and in order to overcome this problem a variety of methods have been researched. In this paper, we proposed an impulse noise removal algorithm which is superior to the edge preserving capacity. At this tine, after detecting a noise by using the noise detector, we applied a noise removal algorithm based on the min-max operation and compared the capacity with existing methods through simulation.

  • PDF

Support Vector Machine and Improved Adaptive Median Filtering for Impulse Noise Removal from Images (영상에서 Support Vector Machine과 개선된 Adaptive Median 필터를 이용한 임펄스 잡음 제거)

  • Lee, Dae-Geun;Park, Min-Jae;Kim, Jeong-Uk;Kim, Do-Yoon;Kim, Dong-Wook;Lim, Dong-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.1
    • /
    • pp.151-165
    • /
    • 2010
  • Images are often corrupted by impulse noise due to a noise sensor or channel transmission errors. The filter based on SVM(Support Vector Machine) and the improved adaptive median filtering is proposed to preserve image details while suppressing impulse noise for image restoration. Our approach uses an SVM impulse detector to judge whether the input pixel is noise. If a pixel is detected as a noisy pixel, the improved adaptive median filter is used to replace it. To demonstrate the performance of the proposed filter, extensive simulation experiments have been conducted under both salt-and-pepper and random-valued impulse noise models to compare our method with many other well known filters in the qualitative measure and quantitative measures such as PSNR and MAE. Experimental results indicate that the proposed filter performs significantly better than many other existing filters.

Image Restoration Algorithm using Weighted Switching Filter for Remove Random-Valued Impulse Noise (랜덤 임펄스 잡음을 제거하기 위한 가중치 스위칭 필터를 이용한 영상 복원 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.609-615
    • /
    • 2020
  • In the modern society, the use of digital equipment is increasing along with the 4th industrial revolution, and the importance of image and signal processing is increasing. At the same time, research on noise reduction is being actively conducted. In this paper, we propose a switching filter algorithm for random-valued impulse noise cancellation. The proposed algorithm obtains the threshold value by determining the noise level present in the image, and threshold value is compared with the difference between the input pixel value and the reference value, and is used in the weight switching process of the filter. The final output of the filter is estimated by applying a pixel weight and a modified weight median filter according to the switching, and obtains a final output by comparing the estimated value with the input pixel value. To evaluate the performance of the proposed algorithm, we compared it with the existing methods using simulation and PSNR.

Impulse Noise Detection Using Self-Organizing Neural Network and Its Application to Selective Median Filtering (Self-Organizing Neural Network를 이용한 임펄스 노이즈 검출과 선택적 미디언 필터 적용)

  • Lee Chong Ho;Dong Sung Soo;Wee Jae Woo;Song Seung Min
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.166-173
    • /
    • 2005
  • Preserving image features, edges and details in the process of impulsive noise filtering is an important problem. To avoid image blurring, only corrupted pixels must be filtered. In this paper, we propose an effective impulse noise detection method using Self-Organizing Neural Network(SONN) which applies median filter selectively for removing random-valued impulse noises while preserving image features, edges and details. Using a $3\times3$ window, we obtain useful local features with which impulse noise patterns are classified. SONN is trained with sample image patterns and each pixel pattern is classified by its local information in the image. The results of the experiments with various images which are the noise range of $5-15\%$ show that our method performs better than other methods which use multiple threshold values for impulse noise detection.

A Fuzzy Impulse Noise Filter Based on Boundary Discriminative Noise Detection

  • Verma, Om Prakash;Singh, Shweta
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.89-102
    • /
    • 2013
  • The paper presents a fuzzy based impulse noise filter for both gray scale and color images. The proposed approach is based on the technique of boundary discriminative noise detection. The algorithm is a multi-step process comprising detection, filtering and color correction stages. The detection procedure classifies the pixels as corrupted and uncorrupted by computing decision boundaries, which are fuzzified to improve the outputs obtained. In the case of color images, a correction term is added by examining the interactions between the color components for further improvement. Quantitative and qualitative analysis, performed on standard gray scale and color image, shows improved performance of the proposed technique over existing state-of-the-art algorithms in terms of Peak Signal to Noise Ratio (PSNR) and color difference metrics. The analysis proves the applicability of the proposed algorithm to random valued impulse noise.