• Title/Summary/Keyword: Random signal

Search Result 720, Processing Time 0.027 seconds

The effective noise reduction method in infrared image using bilateral filter based on median value

  • Park, Chan-Geun;Choi, Byung-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.27-33
    • /
    • 2016
  • In this paper, we propose the bilateral filter based on median value that can reduce random noise and impulse noise with minimal loss of contour information. In general, EO / IR camera to generate a random or impulse noise due to a number of reasons. This noise reduces the performance of detecting and tracking by signal processing. To reduce noise, our proposed bilateral filter sorts the values of the target pixel and the peripheral pixels, and extracts a median filter coefficients of the Gaussian type. Then to extract the Gaussian filter coefficient involved with the distance between the center pixel and the surrounding pixels. As using those filter coefficients, our proposed method can remove the various noise effectively while minimizing the loss of the contour information. To validate our proposed method, we present experimental results for several IR images.

A Study on Simulation Of Readout Signal of Magnet-Optic Disk (광자기 디스크 재생신호 시뮬레이션에 관한 연구)

  • 손장우;조순철;이세광;김순광
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.3
    • /
    • pp.174-178
    • /
    • 1996
  • A method was studied which simulate signal and noise for magneto-optical disk drive system Recorded mark patterns and incident laser beam were modeled and discretized. Using them readout waveformj and amplitude were simulated. Adding Gaussian random noise to the readout signal and executing one dimensional discrete FFT (Fast Fourier Transform) algorithm signal and noise spectrum was estimated. From the spectrum, CNR (Carrier to Noise Ratio) was obtained.

  • PDF

The estimation of first order derivative phase error using iterative algorithm in SAR imaging system (SAR(Synthetic Aperture Radar)Imaging 시스템에서 제안 알고리즘의 반복수행을 통한 위상오차의 기울기 추정기법 연구)

  • 김형주;최정희
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.505-508
    • /
    • 2000
  • The success of target reconstruction in SAR(Synthetic Aperture Radar) imaging system is greatly dependent on the coherent detection. Primary causes of incoherent detection are uncompensated target or sensor motion, random turbulence in propagation media, wrong path in radar platform, and etc. And these appear as multiplicative phase error to the echoed signal, which consequently, causes fatal degradations such as fading or dislocation of target image. In this paper, we present iterative phase error estimation scheme which uses echoed data in all temporal frequencies. We started with analyzing wave equation for one point target and extend to overall echoed data from the target scene - The two wave equations governing the SAR signal at two temporal frequencies of the radar signal are combined to derive a method to reconstruct the complex phase error function. Eventually, this operation attains phase error correction algorithm from the total received SAR signal. We verify the success of the proposed algorithm by applying it to the simulated spotlight-mode SAR data.

  • PDF

A Study on the Series Arc Detection Algorithm (직렬아크 검출 알고리즘에 관한 연구)

  • Kim, Il-Kwon;Park, Dae-Won;Choi, Su-Yeon;Park, Chan-Yong;Kil, Gyung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1433-1437
    • /
    • 2007
  • This paper describes the detection algorithm which can distinguish series arcing signal from voltage harmonics or noises produced by the operation of non-linear loads. A high pass filter with the cutoff frequency of 3 kHz is designed and it can attenuate power frequency signal to 80 dB. Series arcing phenomena is simulated to an incandescent lamp controlled by a dimmer. From the experimental results, it is confirmed that the amplitude of the filter output voltage varies at random during series arcing but the signal generated by non-linear loads appears on a regular basis. We proposed a series arcing detection algorithm using the chaotic nature of voltage signal.

  • PDF

Embedding DC Digital Watermarking in the DCT (DCT의 DC 계수에 워터마크 삽입하는 디지털 워터마킹)

  • 신용달;권성근
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.6
    • /
    • pp.962-967
    • /
    • 2003
  • In this paper, we proposed DC term embedding digital watermarking in the DCT domain. We computed a 8${\times}$8 block DCT The watermark signal is composed of a random number sequence of length 1000, which obeys normal distribution with zero mean and unit variance N(0,1). We embedded watermark signal in DC term for small watermark signal, the other watermark signal embedded in the largest AC coefficients. Experiment show that the invisibility and robust of the proposed method better than those of the conventional methods.

  • PDF

A Method Enabling Exploitation of Spatial Diversity and Physical Layer Security in an Extreme Case of Source-Wiretapping without a Jamming Beamformer

  • Tran, Truc Thanh;Kong, Hyung Yun
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.482-490
    • /
    • 2015
  • This article exploits spatial diversity for jamming to prevent wiretapping in the extreme case in which an eavesdropper is located near the source and a common jamming signal is unavailable. To address this challenge, the jamming signal is allowed to carry a random binary message. Then, it is proposed that the active intermediate node transmits this jamming signal and the decoding of this signal at both source and destination is physically secured as result of using the physical-layer security method. If the source and the destination securely and correctly decode this jamming message, the source transmits another message which is created from combining its information message and the decoded message using the network-coding method. Therefore, this method prevents the transmissions from being eavesdropped upon by the source-wiretapping.

TIME-DOMAIN TECHNIQUE FOR FRONT-END NOISE SIMULATION IN NUCLEAR SPECTROSCOPY

  • Neamintara, Hudsaleark;Mangclaviraj, Virul;Punnachaiya, Suvit
    • Nuclear Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.717-724
    • /
    • 2007
  • A measurement-based time-domain noise simulation of radiation detector-preamplifier (front-end) noise in nuclear spectroscopy is described. The time-domain noise simulation was performed by generating "noise random numbers" using Monte Carlo's inverse method. The probability of unpredictable noise was derived from the empirical cumulative distribution function via the sampled noise, which was measured from a preamplifier output. Results of the simulated noise were investigated as functions of time, frequency, and statistical domains. Noise behavior was evaluated using the signal wave-shaping function, and was compared with the actual noise. Similarities between the response characteristics of the simulated and the actual preamplifier output noises were found. The simulated noise and the computed nuclear pulse signal were also combined to generate a simulated preamplifier output signal. Such simulated output signals could be used in nuclear spectroscopy to determine energy resolution degradation from front-end noise effect.

Heart Sound Recognition by Analysis of wavelet transform and Neural network.

  • Lee, Jung-Jun;Lee, Sang-Min;Hong, Seung-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1045-1048
    • /
    • 2000
  • This paper presents the application of the wavelet transform analysis and the neural network method to the phonocardiogram (PCG) signal. Heart sound is a acoustic signal generated by cardiac valves, myocardium and blood flow and is a very complex and nonstationary signal composed of many source. Heart sound can be discriminated normal heart sound and heart murmur. Murmurs have broader frequency bandwidth than the normal ones and can occur at random position of cardiac cycle. In this paper, we classified the group of heart sound as normal heart sound(NO), pre-systolic murmur(PS), early systolic murmur(ES), late systolic murmur(LS), early diastolic murmur(ED). And we used the wavelet transform to shorten artifacts and strengthen the low level signal. The ANN system was trained and tested with the back- propagation algorithm from a large data set of examples-normal and abnormal signals classified by expert. The best ANN configuration occurred with 15 hidden layer neurons. We can get the accuracy of 85.6% by using the proposed algorithm.

  • PDF

A Development of Algorithm on Robust Adaptive Law in Adaptive mechanism showing Chaotic phenomenon (혼돈 현상을 보이는 적응기구에서의 강인한 적응법칙에 관한 알고리즘의 개발)

  • Jeon, Sang-Young;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.322-325
    • /
    • 1994
  • Mareel and Bitmead proved the presence of chaotic signal in random noise by applying dead beat control theory to adaptive mechanism. In this paper robust adaptive theory is proposed. With the property of chaotic signal that has order and law, the proposed theory can enhance the control Performance by applying the recursive algorithm that uses dynamic relation which have small correlation. The performance of proposed algorithm is demonstrated with the computer simulation of position control of electric motor. In this simulation, the adaptive low is adopted to control electric motor and the Presence of chaotic signal in feedback signal is proved by using several method such as time series, fourier spectrum phase portrait method.

  • PDF

A Satellite Navigation Signal Scheme Using Zadoff-Chu Sequence for Reducing the Signal Acquisition Space

  • Park, Dae-Soon;Kim, Jeong-Been;Lee, Je-Won;Kim, Kap-Jin;Song, Kiwon;Ahn, Jae Min
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • A signal system for improving the code acquisition complexity of Global Navigation Satellite System (GNSS) receiver is proposed and the receiving correlator scheme is presented accordingly. The proposed signal system is a hierarchical code type with a duplexing configuration which consists of the Zadoff-Chu (ZC) code having a good auto-correlation characteristic and the Pseudo Random Noise (PRN) code for distinguishing satellites. The receiving correlator has the scheme that consists of the primary correlator for the ZC code and the secondary correlator which uses the PRN code for the primary correlation results. The simulation results of code acquisition using the receiving correlator of the proposed signal system show that the proposed signal scheme improves the complexity of GNSS receiver and has the code acquisition performance comparable to the existing GNSS signal system using Coarse/Acquisition (C/A) code.