• Title/Summary/Keyword: Random regression

Search Result 963, Processing Time 0.021 seconds

Semiparametric Bayesian Regression Model for Multiple Event Time Data

  • Kim, Yongdai
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.4
    • /
    • pp.509-518
    • /
    • 2002
  • This paper is concerned with semiparametric Bayesian analysis of the proportional intensity regression model of the Poisson process for multiple event time data. A nonparametric prior distribution is put on the baseline cumulative intensity function and a usual parametric prior distribution is given to the regression parameter. Also we allow heterogeneity among the intensity processes in different subjects by using unobserved random frailty components. Gibbs sampling approach with the Metropolis-Hastings algorithm is used to explore the posterior distributions. Finally, the results are applied to a real data set.

Mixed Effects Kernel Binomial Regression

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1327-1334
    • /
    • 2008
  • Mixed effect binomial regression models are widely used for analysis of correlated count data in which the response is the result of a series of one of two possible disjoint outcomes. In this paper, we consider kernel extensions with nonparametric fixed effects and parametric random effects. The estimation is through the penalized likelihood method based on kernel trick, and our focus is on the efficient computation and the effective hyperparameter selection. For the selection of hyperparameters, cross-validation techniques are employed. Examples illustrating usage and features of the proposed method are provided.

  • PDF

Development of Ship Valuation Model by Neural Network (신경망기법을 활용한 선박 가치평가 모델 개발)

  • Kim, Donggyun;Choi, Jung-Suk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.13-21
    • /
    • 2021
  • The purpose of this study is to develop the ship valuation model by utilizing the neural network model. The target of the valuation was secondhand VLCC. The variables were set as major factors inducing changes in the value of ship through prior research, and the corresponding data were collected on a monthly basis from January 2000 to August 2020. To determine the stability of subsequent variables, a multi-collinearity test was carried out and finally the research structure was designed by selecting six independent variables and one dependent variable. Based on this structure, a total of nine simulation models were designed using linear regression, neural network regression, and random forest algorithm. In addition, the accuracy of the evaluation results are improved through comparative verification between each model. As a result of the evaluation, it was found that the most accurate when the neural network regression model, which consist of a hidden layer composed of two layers, was simulated through comparison with actual VLCC values. The possible implications of this study first, creative research in terms of applying neural network model to ship valuation; this deviates from the existing formalized evaluation techniques. Second, the objectivity of research results was enhanced from a dynamic perspective by analyzing and predicting the factors of changes in the shipping. market.

Convergence study to detect metabolic syndrome risk factors by gender difference (성별에 따른 대사증후군의 위험요인 탐색을 위한 융복합 연구)

  • Lee, So-Eun;Rhee, Hyun-Sill
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.477-486
    • /
    • 2021
  • This study was conducted to detect metabolic syndrome risk factors and gender difference in adults. 18,616 cases of adults are collected by Korea Health and Nutrition Examination Study from 2016 to 2019. Using 4 types of machine Learning(Logistic Regression, Decision Tree, Naïve Bayes, Random Forest) to predict Metabolic Syndrome. The results showed that the Random Forest was superior to other methods in men and women. In both of participants, BMI, diet(fat, vitamin C, vitamin A, protein, energy intake), number of underlying chronic disease and age were the upper importance. In women, education level, menarche age, menopause was additional upper importance and age, number of underlying chronic disease were more powerful importance than men. Future study have to verify various strategy to prevent metabolic syndrome.

Incremental Face Annotation for Open Web Service (개방형 웹 서버스를 위한 증가적 얼굴 어노테이션)

  • Chai, Kwon-Taeg;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.8
    • /
    • pp.673-682
    • /
    • 2009
  • Recently, photo sharing and publishing based Social Network Sites(SNSs) are increasingly attracting the attention of academic and industry researches. Unlike the face recognition environment addressed by existing works, face annotation problem under SNSs is differentiated in terms of daily updated images database, a limited number of training set and millions of users. Thus, conventional approach may not deal with these problems. In this paper, we proposed a face annotation method for sharing and publishing photographs that contain faces under a social network service using random projection, non-linear regression and representational state transfer. Our experiments on several databases show that the proposed method records an almost constant execution time with comparable accuracy of the PCA-SVM classifier.

Prediction of fine dust PM10 using a deep neural network model (심층 신경망모형을 사용한 미세먼지 PM10의 예측)

  • Jeon, Seonghyeon;Son, Young Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.265-285
    • /
    • 2018
  • In this study, we applied a deep neural network model to predict four grades of fine dust $PM_{10}$, 'Good, Moderate, Bad, Very Bad' and two grades, 'Good or Moderate and Bad or Very Bad'. The deep neural network model and existing classification techniques (such as neural network model, multinomial logistic regression model, support vector machine, and random forest) were applied to fine dust daily data observed from 2010 to 2015 in six major metropolitan areas of Korea. Data analysis shows that the deep neural network model outperforms others in the sense of accuracy.

Prediction of Academic Performance of College Students with Bipolar Disorder using different Deep learning and Machine learning algorithms

  • Peerbasha, S.;Surputheen, M. Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.350-358
    • /
    • 2021
  • In modern years, the performance of the students is analysed with lot of difficulties, which is a very important problem in all the academic institutions. The main idea of this paper is to analyze and evaluate the academic performance of the college students with bipolar disorder by applying data mining classification algorithms using Jupiter Notebook, python tool. This tool has been generally used as a decision-making tool in terms of academic performance of the students. The various classifiers could be logistic regression, random forest classifier gini, random forest classifier entropy, decision tree classifier, K-Neighbours classifier, Ada Boost classifier, Extra Tree Classifier, GaussianNB, BernoulliNB are used. The results of such classification model deals with 13 measures like Accuracy, Precision, Recall, F1 Measure, Sensitivity, Specificity, R Squared, Mean Absolute Error, Mean Squared Error, Root Mean Squared Error, TPR, TNR, FPR and FNR. Therefore, conclusion could be reached that the Decision Tree Classifier is better than that of different algorithms.

Usage of coot optimization-based random forests analysis for determining the shallow foundation settlement

  • Yi, Han;Xingliang, Jiang;Ye, Wang;Hui, Wang
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.271-291
    • /
    • 2023
  • Settlement estimation in cohesion materials is a crucial topic to tackle because of the complexity of the cohesion soil texture, which could be solved roughly by substituted solutions. The goal of this research was to implement recently developed machine learning features as effective methods to predict settlement (Sm) of shallow foundations over cohesion soil properties. These models include hybridized support vector regression (SVR), random forests (RF), and coot optimization algorithm (COM), and black widow optimization algorithm (BWOA). The results indicate that all created systems accurately simulated the Sm, with an R2 of better than 0.979 and 0.9765 for the train and test data phases, respectively. This indicates extraordinary efficiency and a good correlation between the experimental and simulated Sm. The model's results outperformed those of ANFIS - PSO, and COM - RF findings were much outstanding to those of the literature. By analyzing established designs utilizing different analysis aspects, such as various error criteria, Taylor diagrams, uncertainty analyses, and error distribution, it was feasible to arrive at the final result that the recommended COM - RF was the outperformed approach in the forecasting process of Sm of shallow foundation, while other techniques were also reliable.

Application of a comparative analysis of random forest programming to predict the strength of environmentally-friendly geopolymer concrete

  • Ying Bi;Yeng Yi
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.443-458
    • /
    • 2024
  • The construction industry, one of the biggest producers of greenhouse emissions, is under a lot of pressure as a result of growing worries about how climate change may affect local communities. Geopolymer concrete (GPC) has emerged as a feasible choice for construction materials as a result of the environmental issues connected to the manufacture of cement. The findings of this study contribute to the development of machine learning methods for estimating the properties of eco-friendly concrete, which might be used in lieu of traditional concrete to reduce CO2 emissions in the building industry. In the present work, the compressive strength (fc) of GPC is calculated using random forests regression (RFR) methodology where natural zeolite (NZ) and silica fume (SF) replace ground granulated blast-furnace slag (GGBFS). From the literature, a thorough set of experimental experiments on GPC samples were compiled, totaling 254 data rows. The considered RFR integrated with artificial hummingbird optimization (AHA), black widow optimization algorithm (BWOA), and chimp optimization algorithm (ChOA), abbreviated as ARFR, BRFR, and CRFR. The outcomes obtained for RFR models demonstrated satisfactory performance across all evaluation metrics in the prediction procedure. For R2 metric, the CRFR model gained 0.9988 and 0.9981 in the train and test data set higher than those for BRFR (0.9982 and 0.9969), followed by ARFR (0.9971 and 0.9956). Some other error and distribution metrics depicted a roughly 50% improvement for CRFR respect to ARFR.

A statistical analysis of wh-scope responses to embedded wh-phrases in Gyeongsang Korean

  • Weonhee Yun
    • Phonetics and Speech Sciences
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2024
  • This study investigates the fixed and random factors affecting response patterns of wh-scope interpretations in Gyeongsang Korean. It employed logistic mixed-effects regression models to analyze responses from 24 participants who listened to 40 pre-recorded stimuli from 40 different speakers. The stimuli consisted of an embedded wh-phrase and an interrogative ending marker, "-nkiko," thereby forming a wh-question, specifically a matrix wh-scope. Participants repeated the test three times. The study found that the prominence level of a prosodic phrase composed of an embedded verb and a complementizer was inversely related to responses with wh-questions, as demonstrated through multiple regression analysis in Yun. The test trial significantly impacted the number of responses with wh-questions, increasing from 50.3% in the first trial to 58.8% and 61.2% in subsequent trials. Examination of random subject effects revealed two main factors influencing responses: morpho-syntactic constraints and prosodic structural integrity. These two factors demonstrated the potential to be inversely weighted. Analysis of random stimulus effects suggested that the prominence level had limited effects on response patterns with each stimulus primarily eliciting one type of responses across trials.