이 연구는 과학적 논증 담화에 대한 자동 채점의 성능 개선 방향을 탐색하였으며, 자동 채점 모델을 활용하여 논증 담화의 양상과 패턴을 분석하였다. 이를 위해 과학적 논증 수업에서 발생한 학생 발화를 대상으로 논증 수준을 평가하는 자동 채점을 수행하였다. 이 자동 채점의 데이터셋은 4가지 단위의 논증 피처와 논증 수준 평가틀로 구성되었다. 특히, 자동 채점에 논증 패턴을 반영하기 위하여 논증 클러스터와 n-gram을 활용하였다. 자동 채점 모델은 3가지의 지도 학습 기법으로 구성되었으며, 그 결과 총 33개의 자동 채점 모델이 구성되었다. 자동 채점의 결과, 최대 85.37%, 평균 77.59%의 채점 정확도를 얻었다. 이 과정에서 논증 담화의 패턴이 자동 채점의 성능을 개선하는 주요한 피처임을 확인하였다. 또한, 의사결정 나무와 랜덤 포레스트의 모델을 통하여 과학적 논증 수준에 따른 논증의 양상과 패턴을 분석하였다. 이를 통하여 주장, 자료와 함께 정당화가 체계적으로 구성된 과학적 논증과 자료에 대한 활발한 상호작용이 이루어진 과학적 논증이 논증 수준의 발달을 이끈다는 점 등을 확인하였다. 이와 같은 자동 채점 모델의 해석은 논증 패턴을 분석하는 새로운 연구 방법을 제언하는 것이다.
과학적 품질경영을 하기 위해서는 측정시스템에 문제가 없어야 한다. 이에 본 논문에서는 측정과정 중 측정결과에 영향을 미칠 수 있는 요인들이 무엇인지 확인하여 측정결과가 위치와 변동 면에서 문제점이 발생할 때 이를 야기하는 요인을 나열하고자 한다. 측정시스템의 변동은 크게 위치와 산포의 두 가지 속성으로 묘사되는데, 위치와 관련된 속성으로는 정확성, 안정성, 직선성이 있고, 산포와 관련된 속성으로는 재현성과 반복성이 있다. 측정시스템분석에서는 산포와 관련된 요소를 분석하는 것이 R&R분석인데, 여기서 반복성과 재현성의 크기는 여러 차례의 측정치간 차이인 범위와 측정자간 차이인 범위로 나타내며, 이들 범위를 이용한 99%의 산포로 그 크기를 파악한다. 측정시스템분석은 R&R분석이외에 실험계획을 활용하여 측정치의 변동을 유발하는 요인의 변동의 크기를 추정할 수 있다. 이때 변동을 야기하는 요인인 작업자와 제품이 랜덤요인인지 또는 고정요인인지 점검하여 그에 맞게 각 요인의 변동의 크기를 구해야 적절한 분석이 이루어진다.
In this study, an artificial neural network model was constructed to convert CAE analysis data into similar experimental data. In the analysis and experiment, the injection molding data for 50 conditions were acquired through the design of experiment and random selection method. The injection molding conditions and the weight, height, and diameter of the product derived from CAE results were used as the input parameters for learning of the convert model. Also the product qualities of experimental results were used as the output parameters for learning of the convert model. The accuracy of the convert model showed RMSE values of 0.06g, 0.03mm, and 0.03mm in weight, height, and diameter, respectively. As the next step, additional randomly selected conditions were created and CAE analysis was performed. Then, the additional CAE analysis data were converted to similar experimental data through the conversion model. An artificial neural network model was constructed to predict the quality of injection molded product by using converted similar experimental data and injection molding experiment data. The injection molding conditions were used as input parameters for learning of the predicted model and weight, height, and diameter of the product were used as output parameters for learning. As a result of evaluating the performance of the prediction model, the predicted weight, height, and diameter showed RMSE values of 0.11g, 0.03mm, and 0.05mm and in terms of quality criteria of the target product, all of them showed accurate results satisfying the criteria range.
Excessive presence of As level in groundwater is a major health problem worldwide. In the Red River Delta in Vietnam, several million residents possess a high risk of chronic As poisoning. The As releases into groundwater caused by natural process through microbially-driven reductive dissolution of Fe (III) oxides. It has been extracted by Red River residents using private tube wells for drinking and daily purposes because of their unawareness of the contamination. This long-term consumption of As-contaminated groundwater could lead to various health problems. Therefore, a predictive model would be useful to expose contamination risks of the wells in the Red River Delta Vietnam area. This study used four machine learning algorithms to predict the As probability of study sites in Red River Delta, Vietnam. The GBM was the best performing model with the accuracy, precision, sensitivity, and specificity of 98.7%, 100%, 95.2%, and 100%, respectively. In addition, it resulted the highest AUC of 92% and 96% for the PRC and ROC curves, with Eh and Fe as the most important variables. The partial dependence plot of As concentration on the model parameters showed that the probability of high level of As is related to the low number of wells' depth, Eh, and SO4, along with high PO43- and NH4+. This condition triggers the reductive dissolution of iron phases, thus releasing As into groundwater.
인간의 시각 피질을 구성하고 있는 시각 뉴런은 모든 시각적 자극에 반응하는 것이 아니라 특정한 조건을 갖춘 시각적 자극에 반응한다는 것이 생리학적 실험을 통하여 밝혀졌다. 본 연구에서는 이와 같은 생리학적 실험을 해석하기 위하여 랜덤한 이득을 갖는 선형 필터를 포함하는 뉴런의 발화 특성을 시뮬레이션하고 설명할 수 있는 모델을 제안하였고 또한 제안한 모델의 선형 필터의 출력이 전체 자극 데이터의 부공간을 형성하고 있음을 실험을 통하여 증명하였다. 구현된 모델의 타당성을 검증하기 위하여 서로 다른 4개의 시각적 자극 데이터들로부터 임의로 추출한 2개의 화소에 대한 값의 분포를 관찰하였다. 전체 자극 데이터와 스파이크 발화 자극 데이터의 분포로부터 중심 좌표 값 즉, 가장 많은 값이 분포하는 좌표 값을 추출하여 두 분포 사이의 차이를 확인할 수 있었고 구현된 모델이 전형적인 LNP 모델과 동일하게 전체 자극 데이터가 전체 집합일 경우 스파이크를 발생시키는 자극 데이터가 전체 자극 데이터의 부공간 임을 실험을 통하여 증명하였다. 본 연구는 시각적 자극에 대한 스파이크의 발생기전과 관련된 기초 연구로 활용할 수 있다.
본 연구는 중고거래 어플리케이션 <당근마켓>의 리뷰텍스트에 나타난 소비자의 인성 함축단어의 사용실태를 분석하였다. 데이터 수집은 2021년 5월로부터 과거 6개월간 서울과 경기권을 대상으로 하였다. 이는 웹 크롤러를 개발하여 무작위 추출 총 1368건을 수집 후, 최종 570건을 전처리하여 사용하였다. 결과는 다음과 같다. 첫째, 제품의 상거래 플랫폼임에도 리뷰텍스트의 48.2%는 소비자의 인성 관련 내용이었다. 둘째, 리뷰 텍스트는 긍정적 반응이 주를 이루며 이는 감사라는 키워드를 기반으로 텍스트 네트워크 구조를 형성하였다. 셋째, 소비자 인성을 함축하는 리뷰 텍스트는 소비자의 '대타적 인성'과' 대내적 인성'으로 그룹화되었고, 이는 플랫폼에서 통합적으로 작용하였다. 결론적으로 인성 관련 요인들이 플랫폼 거래 과정의 상호작용에서 중요한 역할을 함을 확인하였고, 앞으로 플랫폼의 서비스 품질에도 소비자의 인성이 경쟁력으로 작용할 것이므로, 이에 대해 다각도에서 연구되어야 할 것임을 제언하였다.
Zhai, Guanghao;Narazaki, Yasutaka;Wang, Shuo;Shajihan, Shaik Althaf V.;Spencer, Billie F. Jr.
Smart Structures and Systems
/
제29권1호
/
pp.237-250
/
2022
Structural health monitoring (SHM) plays an important role in ensuring the safety and functionality of critical civil infrastructure. In recent years, numerous researchers have conducted studies to develop computer vision and machine learning techniques for SHM purposes, offering the potential to reduce the laborious nature and improve the effectiveness of field inspections. However, high-quality vision data from various types of damaged structures is relatively difficult to obtain, because of the rare occurrence of damaged structures. The lack of data is particularly acute for fatigue crack in steel bridge girder. As a result, the lack of data for training purposes is one of the main issues that hinders wider application of these powerful techniques for SHM. To address this problem, the use of synthetic data is proposed in this article to augment real-world datasets used for training neural networks that can identify fatigue cracks in steel structures. First, random textures representing the surface of steel structures with fatigue cracks are created and mapped onto a 3D graphics model. Subsequently, this model is used to generate synthetic images for various lighting conditions and camera angles. A fully convolutional network is then trained for two cases: (1) using only real-word data, and (2) using both synthetic and real-word data. By employing synthetic data augmentation in the training process, the crack identification performance of the neural network for the test dataset is seen to improve from 35% to 40% and 49% to 62% for intersection over union (IoU) and precision, respectively, demonstrating the efficacy of the proposed approach.
본 논문에서 우리는 기존 식품과 웹 크롤링으로 찾은 식품 데이터에 대해 기계학습으로 식품군을 분류하여 식품교환표를 갱신하기 위한 의사결정트리 기반의 기계학습 모델을 제안한다. 식품교환표는 영양 관리가 필요한 환자의 식이요법이나 다이어트 식단을 편성할 때 식품 교환 섭취에 사용된다. 식단의 기준이 되는 식품교환표는 국민건강영양조사를 통한 개정과정에서 많은 인력과 시간이 소요되어 새로운 식품이나 트렌드에 따른 식품 변화를 신속하게 반영하기 어렵다. 제안 기법은 기존의 식품군을 바탕으로 새롭게 추가되는 식품을 분류하기 때문에 식품의 트렌드를 반영한 식품교환표 구성이 가능하다. 연구에서 제안 모델로 식품을 분류한 결과, 식품교환표의 식품군에 대한 정확도가 97.45%로 나타났으며, 본 식품 분류 모델은 병원, 요양원 등에서 식단 구성에 활용도가 높을 것으로 전망된다.
제조업의 공정에서 생성되는 데이터셋은 크게 두 가지 특징을 가진다. 타겟 클래스의 심각한 불균형과 지속적인 Out-of-Distribution(OoD) 샘플의 발생이다. 클래스 불균형은 SMOTE 및 다양한 샘플링 전략을 통해서 대응할 수 있다. 그러나, OoD 탐색은 현재까지 인공신경망 영역에서만 다뤄져 왔다. OoD 탐색의 적용이 가능한 인공신경망은 제조공정 데이터셋에 대해서 만족스러운 성능을 발현하지 못한다. 원인은 제조공정의 데이터셋이 인공신경망에서 일반적으로 다루는 이미지, 텍스트 데이터셋과 비교해서 크기가 매우 작고, 노이즈가 심하다는 것이다. 또한 인공신경망의 과적합(overfitting) 문제도 제조업 데이터셋에서 인공신경망의 성능을 저하하는 원인으로 지적된다. 이에 현재까지 시도된 바 없는 SVM 알고리즘과 OoD 탐색의 접목을 시도하였다. 또한 예측모델의 정밀도 향상을 위해 배깅(Bagging) 알고리즘을 모델링에 반영하였다.
Barium titanate (BaTiO3) is considered to be a beneficial ceramic material for multilayer ceramic capacitor (MLCC) applications because of its high dielectric constant and low dielectric loss. Numerous attempts have been made to improve the physical properties of BaTiO3 in response to recent market trends by employing multicomponent alloying strategies. However, owing to its significant number of atomic combinations and unpredictable physical properties, finding a traditional experimental approach to develop multicomponent systems is difficult; the development of such systems is also time-consuming. In this study, 168 new structures were fabricated using special quasi-random structures (SQSs) of Ba1-xCaxTi1-yZryO3, and 1680 physical properties were extracted from first-principles calculations. In addition, we built an integrated database to manage the computational results, and will provide big data solutions by performing data analysis combined with AI modeling. We believe that our research will enable the global materials market to realize digital transformation through datalization and intelligence of the material development process.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.