• Title/Summary/Keyword: Random Tabu Search Method

Search Result 27, Processing Time 0.021 seconds

Optimum design of rotor supported on floating ring journal bearing by the enhanced artificial life optimization algorithm (인공생명 알고리듬을 이용한 프로팅 링 저널 베어링 지지 축계의 최적설계)

  • Song, Jin-Dea;Suk, Ho-Il;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.400.1-400
    • /
    • 2002
  • This paper presents an optimum design of rotor-bearing system using a hybrid method to compute the solutions of optimization problem. The present hybrid algorithm, namely Enhanced Artificial Life Algorithm(EALA), is a synthesis of an artificial life algorithm(ALA) and the random tabu search(R-tabu) method. We applied EALA to the optimum design of rotor-shaft system supported by the floating ring journal bearings. (omitted)

  • PDF

Improvement of the efficiency from Computer-Generated Holograms by using TS algorithm and SA algorithm (TS 알고리듬과 SA 알고리듬을 이용한 컴퓨터 형성 홀로그램의 성능 향상)

  • Cho, Chang-Sub;Shin, Chang-Mok;Cho, Kyu-Bo;Kim, Soo-Joong;Kim, Cheol-Su
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.43-49
    • /
    • 2005
  • In this paper, we propose a method for optimizing a computer-generated hologram(CGH) by combining the Tabu Search(TS) algorithm with the Simulated Annealing(SA) algorithm. By replacing an initial random pattern of the SA algorithm with an approximately ideal hologram pattern of the TS algorithm, we design a CGH which has high diffraction efficiency(DE). We compared the performance of the proposed algorithm with the SA algorithm using computer simulation and an optical experiment. As a result, we confirmed diffraction efficiency and uniformity to be enhanced in the proposed algorithm.

Optimal Design of Fluid Mount Using Artificial Life Algorithm (인공생명 알고리듬을 이용한 유체마운트의 최적설계)

  • 안영공;송진대;양보석;김동조
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.598-608
    • /
    • 2002
  • This paper shows the optimal design methodology for the fluid engine mount by the artificial life algorithm. The design has been commonly modified by trial and error because there is many design parameters that can be varied in order to minimize transmissibility at the desired fundamental resonant and notch frequencies. The application of trial and error method to optimization of the fluid mount is a great work. Many combinations of parameters are possible to give us the desired resonant and notch frequencies, but the question is which combination Provides the lowest resonant peak and notch depth. In this study the enhanced artificial life algorithm is applied to get the desired fundamental resonant and notch frequencies of a fluid mount and to minimize transmissibility at these frequencies. The present hybrid algorithm is the synthesis of and artificial life algorithm with the random tabu (R-tabu) search method. The hybrid algorithm has some advantages, which is not only faster than the conventional artificial life algorithm, but also gives a more accurate solution. In addition, this algorithm can find all globa1 optimum solutions. The results show that the performance of the optimized mount compared with the original mount is improved significantly.

Development of the New Hybrid Evolutionary Algorithm for Low Vibration of Ship Structures (선박 구조물의 저진동 설계를 위한 새로운 조합 유전 알고리듬 개발)

  • Kong, Young-Mo;Choi, Su-Hyun;Song, Jin-Dae;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.164-170
    • /
    • 2006
  • This paper proposes a RSM-based hybrid evolutionary algorithm (RHEA) which combines the merits of the popular programs such as genetic algorithm (GA), tabu search method, response surface methodology (RSM). This algorithm, for improving the convergent speed that is thought to be the demerit of genetic algorithm, uses response surface methodology and simplex method. The mutation of GA offers random variety to finding the optimum solution. In this study, however, systematic variety can be secured through the use of tabu list. Efficiency of this method has been proven by applying traditional test functions and comparing the results to GA. And it was also proved that the newly suggested algorithm is very effective to find the global optimum solution to minimize the weight for avoiding the resonance of fresh water tank that is placed in the rear of ship. According to the study, GA's convergent speed in initial stages is improved by using RSM method. An optimized solution is calculated without the evaluation of additional actual objective function. In a summary, it is concluded that RHEA is a very powerful global optimization algorithm from the view point of convergent speed and global search ability.

  • PDF

Development of the New Hybrid Evolutionary Algorithm for Low Vibration of Ship Structures (선박 구조물의 저진동 설계를 위한 새로운 조합 유전 알고리듬 개발)

  • Kong, Young-Mo;Choi, Su-Hyun;Song, Jin-Dae;Yang, Bo-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.665-673
    • /
    • 2006
  • This paper proposes a RSM-based hybrid evolutionary Algorithm (RHEA) which combines the merits of the popular programs such as genetic algorithm (GA), tabu search method and response surface methodology (RSM). This algorithm, for improving the convergent speed that is thought to be the demerit of genetic algorithm, uses response surface methodology and simplex method. The mutation of GA offers random variety to finding the optimum solution. In this study, however, systematic variety can be secured through the use of tabu list. Efficiency of this method has been proven by applying traditional left functions and comparing the results to GA. It was also proved that the newly suggested algorithm is very effective to find the global optimum solution to minimize the weight for avoiding the resonance of fresh water tank that is placed in the after body area of ship. According to the study, GA's convergent speed in initial stages is improved by using RSM method. An optimized solution is calculated without the evaluation of additional actual objective function. In a summary, it is concluded that RHEA is a very powerful global optimization algorithm from the view point of convergent speed and global search ability.

Optimal Design of Fluid Mount Using Artificial Life Algorithm (인공생명을 이용한 유체마운트의 최적화)

  • 안영공;송진대;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.427-432
    • /
    • 2001
  • This paper shows the optimum design of the fluid engine mount. The design has been modified by trial and error because there is many design parameters that can be varied in order to obtain resonant and notch frequencies, and notch depth. It seems to be a great application for optimal design for the mount. Many combinations of parameters are possible to give us the desired resonant and notch frequencies, but the question is which combination provides the lowest resonant peak and notch depth\ulcorner In this study, the enhanced artificial life algorithm is applied to get the desired notch frequency of a fluid mount and minimize transmissibility at the notch frequency. The present hybrid algorithm is the synthesis of an artificial life algorithm with the random tabu (R-tabu) search method. The hybrid algorithm has some advantages, which is not only faster than the conventional artificial life algorithm, but also gives a more accurate solution. In addition, this algorithm can find all global optimum solutions. The results show that the performance of a conventional engine mount can be improved significantly compared with the optimized mount.

  • PDF

A Neighbor Selection Technique for Improving Efficiency of Local Search in Load Balancing Problems (부하평준화 문제에서 국지적 탐색의 효율향상을 위한 이웃해 선정 기법)

  • 강병호;조민숙;류광렬
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.164-172
    • /
    • 2004
  • For a local search algorithm to find a bettor quality solution it is required to generate and evaluate a sufficiently large number of candidate solutions as neighbors at each iteration, demanding quite an amount of CPU time. This paper presents a method of selectively generating only good-looking candidate neighbors, so that the number of neighbors can be kept low to improve the efficiency of search. In our method, a newly generated candidate solution is probabilistically selected to become a neighbor based on the quality estimation determined heuristically by a very simple evaluation of the generated candidate. Experimental results on the problem of load balancing for production scheduling have shown that our candidate selection method outperforms other random or greedy selection methods in terms of solution quality given the same amount of CPU time.