• Title/Summary/Keyword: Random Tabu Search Method

Search Result 27, Processing Time 0.023 seconds

Optimum Allocation of Pipe Support Using Combined Optimization Algorithm by Genetic Algorithm and Random Tabu Search Method (유전알고리즘과 Random Tabu 탐색법을 조합한 최적화 알고리즘에 의한 배관지지대의 최적배치)

  • 양보석;최병근;전상범;김동조
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.71-79
    • /
    • 1998
  • This paper introduces a new optimization algorithm which is combined with genetic algorithm and random tabu search method. Genetic algorithm is a random search algorithm which can find the global optimum without converging local optimum. And tabu search method is a very fast search method in convergent speed. The optimizing ability and convergent characteristics of a new combined optimization algorithm is identified by using a test function which have many local optimums and an optimum allocation of pipe support. The caculation results are compared with the existing genetic algorithm.

  • PDF

Ooptimum Design Damping Plate by Combined Method of Genetic Algorithm and Random Tabu Search Method (유전알고리즘과 Tabu탐색법에 의한 제진판의 최적설계)

  • 양보석;전상범;유영훈;최병근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.184-189
    • /
    • 1997
  • This paper introduces a new combined method by genetic algorithm and random tabu search method as optimization algorithm. Genetic algorithm can search the global optimum and tabu search method is very fast in speed. The optimizing ability of new combined method is identified by comparing other optimizing algorithm and used for optimum design of damping plate.

  • PDF

Design of PID Controller using an Improved Tabu Search (개선된 타부 탐색을 이용한 PID 제어기 설계)

  • 이양우;박경훈;김동욱
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.323-330
    • /
    • 2004
  • In this paper, we propose a design method of PID controller using an improved Tabu Search. Tabu Search is improved by neighbor solution creation using Gaussian random distribution and generalized Hermite Biehler Theorem for stable bounds. The range of admissible proportional gains are determined first in closed form. Next the optimal PID gains are selected by improved Tabu Search. The results of Computer simulations represent that the proposed Tabu Search algorithm shows a fast convergence speed and a good control performance.

Optimum Design of Viscous Torsional Vibration Damper Using Random Tabu Search Method (Random Tabu 탐색법을 이용한 점성 비틀림 진동감쇠기의 최적설계)

  • 김유신;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.301-306
    • /
    • 1996
  • A torsional damper is generally used to reduce the torsional vibration which occurs at a crankshaft of a multi-cylinder high speed diesel engine. Vibration amplitude should be estimate by the appropriate simulation model to determine the optimum specifications of damper. In this paper a new method which was based on the random tabu search method(RTSM) would be introduced for the viscous damper design to optimize the damping performance. The result was ascertained by comparing with conventional rubber damper.

  • PDF

Structural Optimization Using Tabu Search in Discrete Design Space (타부탐색을 이용한 이산설계공간에서의 구조물의 최적설계)

  • Lee, Kwon-Hee;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.798-806
    • /
    • 2003
  • Structural optimization has been carried out in continuous or discrete design space. Methods for continuous design have been well developed though they are finding the local optima. On the contrary, the existing methods for discrete design are extremely expensive in computational cost or not robust. In this research, an algorithm using tabu search is developed fur the discrete structural designs. The tabu list and the neighbor function of the Tabu concepts are introduced to the algorithm. It defines the number of steps, the maximum number for random searches and the stop criteria. A tabu search is known as the heuristic approach while genetic algorithm and simulated annealing algorithm are attributed to the stochastic approach. It is shown that an algorithm using the tabu search with random moves has an advantage of discrete design. Furthermore, the suggested method finds the reliable optimum for the discrete design problems. The existing tabu search methods are reviewed. Subsequently, the suggested method is explained. The mathematical problems and structural design problems are investigated to show the validity of the proposed method. The results of the structural designs are compared with those from a genetic algorithm and an orthogonal array design.

Development of an Enhanced Artificial Life Optimization Algorithm and Optimum Design of Short Journal Bearings (향상된 인공생명 최적화 알고리듬의 개발과 소폭 저널 베어링의 최적설계)

  • Yang, Bo-Suk;Song, Jin-Dae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.478-487
    • /
    • 2002
  • This paper presents a hybrid method to compute the solutions of an optimization Problem. The present hybrid algorithm is the synthesis of an artificial life algorithm and the random tabu search method. The artificial life algorithm has the most important feature called emergence. The emergence is the result of dynamic interaction among the individuals consisting of the system and is not found in an individual. The conventional artificial life algorithm for optimization is a stochastic searching algorithm using the feature of artificial life. Emergent colonies appear at the optimum locations in an artificial ecology. And the locations are the optimum solutions. We combined the feature of random-tabu search method with the conventional algorithm. The feature of random-tabu search method is to divide any given region into sub-regions. The enhanced artificial life algorithm (EALA) not only converge faster than the conventional artificial life algorithm, but also gives a more accurate solution. In addition, this algorithm can find all global optimum solutions. The enhanced artificial life algorithm is applied to the optimum design of high-speed, short journal bearings and its usefulness is verified through an optimization problem.

Learning of Neural Network Using Tabu Search Method with Random Moves (Random 탐색법과 조합된 Tabu 탐색법을 이용한 신경회로망의 학습)

  • 신광재;양보석;최원호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.121-125
    • /
    • 1994
  • 본 논문에서는 Hu에 의해 고안된 random 탐색법과 조합된 tabu 탐색법(radnom tabu 탐색법)을 결합계수를 구하는 학습 알고리즘으로 직접 사용하여 국소적 최적해에 수렴하는 것을 방지하고, 수렴정도를 개선하는 새로운 방법을 제안한다. 이 방법을 배타적 논리합 문제에 적용하여 역전파법 및 tabu 탐색법을 이용한 오차역전파법과 비교한다. 그리고, 각 파라메터가 오차함수의 수렴에 미치는 영향을 조사한다.

  • PDF

Fast Learning Algorithms for Neural Network Using Tabu Search Method with Random Moves (Random Tabu 탐색법을 이용한 신경회로망의 고속학습알고리즘에 관한 연구)

  • 양보석;신광재;최원호
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.83-91
    • /
    • 1995
  • A neural network with one or more layers of hidden units can be trained using the well-known error back propagation algorithm. According to this algorithm, the synaptic weights of the network are updated during the training by propagating back the error between the expected output and the output provided by the network. However, the error back propagation algorithm is characterized by slow convergence and the time required for training and, in some situation, can be trapped in local minima. A theoretical formulation of a new fast learning method based on tabu search method is presented in this paper. In contrast to the conventional back propagation algorithm which is based solely on the modification of connecting weights of the network by trial and error, the present method involves the calculation of the optimum weights of neural network. The effectiveness and versatility of the present method are verified by the XOR problem. The present method excels in accuracy compared to that of the conventional method of fixed values.

  • PDF

Sensorless Vector Control for Induction Motor Drive using Modified Tabu Search Algorithm

  • Lee, Yang-Woo;Kim, Dong-Wook;Lee, Su-Myoung;Park, Kyung-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.377-381
    • /
    • 2003
  • The design of speed controller for induction motor using tabu search is studied. The proposed sensorless vector control for Induction Motor is composed of two parts. The first part is for optimizing the initial parameters of input-output. The second part is for real time changing parameters of input-output using tabu search. Proposed tabu search is improved by neighbor solution creation using Gaussian random distribution. In order to show the usefulness of the proposed method, we apply the proposed controller to the sensorless speed control of an actual AC induction Motor System. The performance of this approach is verified through simulation.

  • PDF

A Novel and Effective University Course Scheduler Using Adaptive Parallel Tabu Search and Simulated Annealing

  • Xiaorui Shao;Su Yeon Lee;Chang Soo Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.843-859
    • /
    • 2024
  • The university course scheduling problem (UCSP) aims at optimally arranging courses to corresponding rooms, faculties, students, and timeslots with constraints. Previously, the university staff solved this thorny problem by hand, which is very time-consuming and makes it easy to fall into chaos. Even some meta-heuristic algorithms are proposed to solve UCSP automatically, while most only utilize one single algorithm, so the scheduling results still need improvement. Besides, they lack an in-depth analysis of the inner algorithms. Therefore, this paper presents a novel and practical approach based on Tabu search and simulated annealing algorithms for solving USCP. Firstly, the initial solution of the UCSP instance is generated by one construction heuristic algorithm, the first fit algorithm. Secondly, we defined one union move selector to control the moves and provide diverse solutions from initial solutions, consisting of two changing move selectors. Thirdly, Tabu search and simulated annealing (SA) are combined to filter out unacceptable moves in a parallel mode. Then, the acceptable moves are selected by one adaptive decision algorithm, which is used as the next step to construct the final solving path. Benefits from the excellent design of the union move selector, parallel tabu search and SA, and adaptive decision algorithm, the proposed method could effectively solve UCSP since it fully uses Tabu and SA. We designed and tested the proposed algorithm in one real-world (PKNU-UCSP) and ten random UCSP instances. The experimental results confirmed its effectiveness. Besides, the in-depth analysis confirmed each component's effectiveness for solving UCSP.